研究生: |
沈介磐 Jie-Pan Shen |
---|---|
論文名稱: |
細菌中圖樣生成動力學與細胞型態調控機制之單分子暨單細胞生物物理研究 Patterning Dynamics and Morphology Control in Bacteria – A Biophysical Study by Single-molecule and Single-cell Approaches |
指導教授: |
周家復
Chia-Fu Chou 曾繁根 Fan-Gang Tseng |
口試委員: |
李超煌
Chau-Hwang Lee 陳彥龍 Yeng-Long Chen 沈家寧 Chia-Ning Shen |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 190 |
中文關鍵詞: | 生物圖樣生成 、小細胞振盪系統 、細胞型態 、細菌型態可塑性 、細菌生物物理 、單一細胞分析 、單分子分析 |
外文關鍵詞: | biological patterning, Min oscillation, cell morphology, bacterial morphological plasticity, bacterial biophysics, single cell analysis, single molecule analysis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
如果說DNA編碼的基因組是生命的藍圖,那麼生物發育各階段中出現的各式圖樣生成系統則為其一系列生命工程圖集。這些工程圖引導、協調與控制生物系統中各個結構單元的遷徙與定位,並因而發展出其各自該有的功能。本論文旨在研究生物圖樣系統產生的過程如何控制生物的型態,以及生物型態如何回饋生物圖樣生成系統以形塑出各式生物圖樣。儘管發育中的細胞與組織的型態(即其形狀與大小)為前一發育階段的生物圖樣所決定,每一發育階段的型態亦能決定下一階段的圖樣生成。在此,單細胞生物如大腸桿菌,因其在細胞組織的簡潔特性而被選為研究圖樣生成動力學與型態控制的相互關係,而單細胞與單分子實驗方法則為本論文所採用,以研究將生命藍圖中的設計轉換為物理與化學環境中各種分子執行機構的運作生物物理原則。反應─擴散機制與化學波動現象為驅動生物分子在介觀世界中自組織與圖樣生成行為的要件,而為彰顯現本研究的科學底蘊,本論文依序呈現三種樣態結構:(1) 圖樣生成動力學;(2) 圖樣生成動力學與細胞型態;(3) 細胞型態控制。大腸桿菌的小細胞圖樣生成系統 (Min-protein patterning system)則作為核心研究對象並貫穿及橋接於論文內不同的研究主題與各個樣態結構中;本論文使用了不同科學領域多樣的科學語彙來傳達此一科研領域最新且重要的學理概念,最後,整體的研究成果則以作者對細菌生物物理學發展前沿的心得與獨特觀點作為總結。
If the DNA-coded genome is the blueprint for life, then pattern-forming systems in series of developmental stages are the collection of construction maps to instruct, orchestrate and control every structural components in an organism to migrate, localize and function as what they should be. The dissertation presented here is intended to investigate how biological patterning realizes cell morphology control and how cell morphology feedbacks to biological patterning. In developing tissues, the shape and size (morphology) in every developmental stage also determines next-stage pattern formation, even though the morphology of cells and tissues are determined from preceding-stage patterns. Herein, single-cell organisms such as bacterium Escherichia coli was chosen for its simplicity in cellular organization to investigate the interconnections between patterning dynamics and morphology control. Single-cell and single-molecule approaches were adopted to investigate biophysical principles that transform designs in the blueprint into executable machineries in the physical and chemical contexts. Reaction-Diffusion mechanism and chemical wave phenomenon are the very essence to drive biomolecules self-organization and patterning in mesoscopic world. As following the research paths toward scientific merits, the dissertation are organized to present three movements: (1) Patterning Dynamics; (2) Patterning Dynamics and Cell Morphology; and (3) Cell Morphology Control. Min-protein patterning system in E. coli is the kernel subject to bridge different research topics among these movements. The scientific language spoken in the dissertation is multi-dialectal in different disciplines such as to interpret new and key concepts in the field. These research efforts are concluded in author’s perspectives on the frontier of bacterial biophysics.
1. Ackermann, M. (2015). A functional perspective on phenotypic heterogeneity in microorganisms. Nature reviews Microbiology 13, 497-508.
2. Adachi, S., Hori, K., and Hiraga, S. (2006). Subcellular positioning of F plasmid mediated by dynamic localization of SopA and SopB. Journal of molecular biology 356, 850-863.
3. Anderson, G.G., Palermo, J.J., Schilling, J.D., Roth, R., Heuser, J., and Hultgren, S.J. (2003). Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105-107.
4. Bacia, K., Petrasek, Z., and Schwille, P. (2012). Correcting for spectral cross-talk in dual-color fluorescence cross-correlation spectroscopy. Chemphyschem : a European journal of chemical physics and physical chemistry 13, 1221-1231.
5. Bacia, K., and Schwille, P. (2007). Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nature protocols 2, 2842-2856.
6. Bhatt, S., Romeo, T., and Kalman, D. (2011). Honing the message: post-transcriptional and post-translational control in attaching and effacing pathogens. Trends in microbiology 19, 217-224.
7. Boles, B.R., Thoendel, M., and Singh, P.K. (2004). Self-generated diversity produces "insurance effects" in biofilm communities. Proceedings of the National Academy of Sciences of the United States of America 101, 16630-16635.
8. Bonny, M., Fischer-Friedrich, E., Loose, M., Schwille, P., and Kruse, K. (2013). Membrane binding of MinE allows for a comprehensive description of Min-protein pattern formation. PLoS computational biology 9, e1003347.
9. Boulanger, J., Kervrann, C., Bouthemy, P., Elbau, P., Sibarita, J.B., and Salamero, J. (2010). Patch-Based Nonlocal Functional for Denoising Fluorescence Microscopy Image Sequences. IEEE Transactions on Medical Imaging 29, 442-454.
10. Casadaban, M.J., and Cohen, S.N. (1980). Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. Journal of molecular biology 138, 179-207.
11. Chauhan, A., Madiraju, M.V., Fol, M., Lofton, H., Maloney, E., Reynolds, R., and Rajagopalan, M. (2006). Mycobacterium tuberculosis cells growing in macrophages are filamentous and deficient in FtsZ rings. Journal of bacteriology 188, 1856-1865.
12. Chen, S.Y., Jane, W.N., Chen, Y.S., and Wong, H.C. (2009). Morphological changes of Vibrio parahaemolyticus under cold and starvation stresses. International journal of food microbiology 129, 157-165.
13. Cheng, L.J., and Chang, H.C. (2011). Microscale pH regulation by splitting water. Biomicrofluidics 5, 46502-465028.
14. Coltharp, C., and Xiao, J. (2012). Superresolution microscopy for microbiology. Cellular microbiology 14, 1808-1818.
15. Colwell, R.R., and Grimes, D.J. (2000). Nonculturable Microorganisms in the Environment (ASM Press).
16. Corbin, B.D., Yu, X.C., and Margolin, W. (2002). Exploring intracellular space: function of the Min system in round-shaped Escherichia coli. The EMBO journal 21, 1998-2008.
17. Corno, G., and Jurgens, K. (2006). Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Applied and environmental microbiology 72, 78-86.
18. Croxen, M.A., and Finlay, B.B. (2010). Molecular mechanisms of Escherichia coli pathogenicity. Nature reviews Microbiology 8, 26-38.
19. Datsenko, K.A., and Wanner, B.L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America 97, 6640-6645.
20. De, A., Sparreboom, W., van den Berg, A., and Carlen, E.T. (2014). Rapid microfluidic solid-phase extraction system for hyper-methylated DNA enrichment and epigenetic analysis. Biomicrofluidics 8, 054119.
21. den Blaauwen, T. (2013). Prokaryotic cell division: flexible and diverse. Current opinion in microbiology 16, 738-744.
22. Desprat, N., Supatto, W., Pouille, P.A., Beaurepaire, E., and Farge, E. (2008). Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Developmental cell 15, 470-477.
23. Dienes, L., and Weinberger, H.J. (1951). The L forms of bacteria. Bacteriological reviews 15, 245-288.
24. Domingue, G.J., Sr., and Woody, H.B. (1997). Bacterial persistence and expression of disease. Clinical microbiology reviews 10, 320-344.
25. Dominguez-Escobar, J., Chastanet, A., Crevenna, A.H., Fromion, V., Wedlich-Soldner, R., and Carballido-Lopez, R. (2011). Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333, 225-228.
26. Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics 7, 1-26.
27. Elson, E.L. (2011). Fluorescence correlation spectroscopy: past, present, future. Biophysical journal 101, 2855-2870.
28. Eriksson, S., Lucchini, S., Thompson, A., Rhen, M., and Hinton, J.C. (2003). Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Molecular microbiology 47, 103-118.
29. Errington, J. (2013). L-form bacteria, cell walls and the origins of life. Open biology 3, 120143.
30. Errington, J. (2015). Bacterial morphogenesis and the enigmatic MreB helix. Nature reviews Microbiology 13, 241-248.
31. Eto, D.S., Sundsbak, J.L., and Mulvey, M.A. (2006). Actin-gated intracellular growth and resurgence of uropathogenic Escherichia coli. Cellular microbiology 8, 704-717.
32. Fischer-Friedrich, E., Meacci, G., Lutkenhaus, J., Chate, H., and Kruse, K. (2010). Intra- and intercellular fluctuations in Min-protein dynamics decrease with cell length. Proceedings of the National Academy of Sciences of the United States of America 107, 6134-6139.
33. Formstone, A., and Errington, J. (2005). A magnesium-dependent mreB null mutant: implications for the role of mreB in Bacillus subtilis. Molecular microbiology 55, 1646-1657.
34. Ghosal, D., Trambaiolo, D., Amos, L.A., and Lowe, J. (2014). MinCD cell division proteins form alternating copolymeric cytomotive filaments. Nature communications 5, 5341.
35. Glover, W.A., Yang, Y., and Zhang, Y. (2009). Insights into the molecular basis of L-form formation and survival in Escherichia coli. PloS one 4, e7316.
36. Goldberg, A.D., Allis, C.D., and Bernstein, E. (2007). Epigenetics: a landscape takes shape. Cell 128, 635-638.
37. Green, J.B., and Sharpe, J. (2015). Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development (Cambridge, England) 142, 1203-1211.
38. Gu, J., Gupta, R., Chou, C.F., Wei, Q., and Zenhausern, F. (2007). A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature. Lab Chip 7, 1198-1201.
39. Guberman, J.M., Fay, A., Dworkin, J., Wingreen, N.S., and Gitai, Z. (2008). PSICIC: noise and asymmetry in bacterial division revealed by computational image analysis at sub-pixel resolution. PLoS computational biology 4, e1000233.
40. Hayward, R.D., Leong, J.M., Koronakis, V., and Campellone, K.G. (2006). Exploiting pathogenic Escherichia coli to model transmembrane receptor signalling. Nature reviews Microbiology 4, 358-370.
41. Honda, Y., Ding, X., Mussano, F., Wiberg, A., Ho, C.M., and Nishimura, I. (2013). Guiding the osteogenic fate of mouse and human mesenchymal stem cells through feedback system control. Scientific reports 3, 3420.
42. Howard, M., Rutenberg, A.D., and de Vet, S. (2001). Dynamic compartmentalization of bacteria: accurate division in E. coli. Physical review letters 87, 278102.
43. Hsieh, C.W., Lin, T.Y., Lai, H.M., Lin, C.C., Hsieh, T.S., and Shih, Y.L. (2010). Direct MinE-membrane interaction contributes to the proper localization of MinDE in E. coli. Molecular microbiology 75, 499-512.
44. Hu, Z., and Lutkenhaus, J. (1999). Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Molecular microbiology 34, 82-90.
45. Hu, Z., and Lutkenhaus, J. (2003). A conserved sequence at the C-terminus of MinD is required for binding to the membrane and targeting MinC to the septum. Molecular microbiology 47, 345-355.
46. Hu, Z., Mukherjee, A., Pichoff, S., and Lutkenhaus, J. (1999). The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proceedings of the National Academy of Sciences of the United States of America 96, 14819-14824.
47. Huang, K.C., Meir, Y., and Wingreen, N.S. (2003). Dynamic structures in Escherichia coli: spontaneous formation of MinE rings and MinD polar zones. Proceedings of the National Academy of Sciences of the United States of America 100, 12724-12728.
48. Huang, K.C., Mukhopadhyay, R., and Wingreen, N.S. (2006). A curvature-mediated mechanism for localization of lipids to bacterial poles. PLoS computational biology 2, e151.
49. Huang, K.C., and Wingreen, N.S. (2004). Min-protein oscillations in round bacteria. Physical biology 1, 229-235.
50. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., and Liu, H.H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 454, 903-995.
51. Ivanov, V., and Mizuuchi, K. (2010). Multiple modes of interconverting dynamic pattern formation by bacterial cell division proteins. Proceedings of the National Academy of Sciences of the United States of America 107, 8071-8078.
52. Jiang, C., Caccamo, P.D., and Brun, Y.V. (2015). Mechanisms of bacterial morphogenesis: evolutionary cell biology approaches provide new insights. Bioessays 37, 413-425.
53. Justice, S.S., Hunstad, D.A., Cegelski, L., and Hultgren, S.J. (2008). Morphological plasticity as a bacterial survival strategy. Nature reviews Microbiology 6, 162-168.
54. Justice, S.S., Hunstad, D.A., Seed, P.C., and Hultgren, S.J. (2006). Filamentation by Escherichia coli subverts innate defenses during urinary tract infection. Proceedings of the National Academy of Sciences of the United States of America 103, 19884-19889.
55. Koppelman, C.M., Den Blaauwen, T., Duursma, M.C., Heeren, R.M., and Nanninga, N. (2001). Escherichia coli minicell membranes are enriched in cardiolipin. Journal of bacteriology 183, 6144-6147.
56. Kubitschek, H.E., and Woldringh, C.L. (1983). Cell elongation and division probability during the Escherichia coli growth cycle. Journal of bacteriology 153, 1379-1387.
57. Lackner, L.L., Raskin, D.M., and de Boer, P.A. (2003). ATP-dependent interactions between Escherichia coli Min proteins and the phospholipid membrane in vitro. Journal of bacteriology 185, 735-749.
58. Laloux, G., and Jacobs-Wagner, C. (2014). How do bacteria localize proteins to the cell pole? Journal of cell science 127, 11-19.
59. Leisch, N., Verheul, J., Heindl, N.R., Gruber-Vodicka, H.R., Pende, N., den Blaauwen, T., and Bulgheresi, S. (2012). Growth in width and FtsZ ring longitudinal positioning in a gammaproteobacterial symbiont. Current biology : CB 22, R831-832.
60. Lesser-Rojas, L., Sriram, K.K., Liao, K.T., Lai, S.C., Kuo, P.C., Chu, M.L., and Chou, C.F. (2014). Tandem array of nanoelectronic readers embedded coplanar to a fluidic nanochannel for correlated single biopolymer analysis. Biomicrofluidics 8, 016501.
61. Lo, K.Y., Zhu, Y., Tsai, H.F., and Sun, Y.S. (2013). Effects of shear stresses and antioxidant concentrations on the production of reactive oxygen species in lung cancer cells. Biomicrofluidics 7, 64108.
62. Loose, M., Fischer-Friedrich, E., Herold, C., Kruse, K., and Schwille, P. (2011a). Min protein patterns emerge from rapid rebinding and membrane interaction of MinE. Nature structural & molecular biology 18, 577-583.
63. Loose, M., Fischer-Friedrich, E., Ries, J., Kruse, K., and Schwille, P. (2008). Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320, 789-792.
64. Loose, M., Kruse, K., and Schwille, P. (2011b). Protein Self-Organization: Lessons from the Min System. In Annual Review of Biophysics, D.C. Rees, K.A. Dill, and J.R. Williamson, eds., pp. 315-336.
65. Mannik, J., Driessen, R., Galajda, P., Keymer, J.E., and Dekker, C. (2009). Bacterial growth and motility in sub-micron constrictions. Proceedings of the National Academy of Sciences of the United States of America 106, 14861-14866.
66. Mannik, J., Wu, F., Hol, F.J., Bisicchia, P., Sherratt, D.J., Keymer, J.E., and Dekker, C. (2012). Robustness and accuracy of cell division in Escherichia coli in diverse cell shapes. Proceedings of the National Academy of Sciences of the United States of America 109, 6957-6962.
67. Marches, O., Covarelli, V., Dahan, S., Cougoule, C., Bhatta, P., Frankel, G., and Caron, E. (2008). EspJ of enteropathogenic and enterohaemorrhagic Escherichia coli inhibits opsono-phagocytosis. Cellular microbiology 10, 1104-1115.
68. Marcon, L., and Sharpe, J. (2012). Turing patterns in development: what about the horse part? Current opinion in genetics & development 22, 578-584.
69. Margolin, W. (2009). Sculpting the bacterial cell. Current biology : CB 19, R812-822.
70. Markova, N., Slavchev, G., Michailova, L., and Jourdanova, M. (2010). Survival of Escherichia coli under lethal heat stress by L-form conversion. International journal of biological sciences 6, 303-315.
71. Martos, A., Petrasek, Z., and Schwille, P. (2013). Propagation of MinCDE waves on free-standing membranes. Environmental microbiology 15, 3319-3326.
72. Matsuoka, T., Choul Kim, B., Moraes, C., Han, M., and Takayama, S. (2013). Micro- and nanofluidic technologies for epigenetic profiling. Biomicrofluidics 7, 41301.
73. Mazor, S., Regev, T., Mileykovskaya, E., Margolin, W., Dowhan, W., and Fishov, I. (2008a). Mutual effects of MinD-membrane interaction: I. Changes in the membrane properties induced by MinD binding. Biochimica et biophysica acta 1778, 2496-2504.
74. Mazor, S., Regev, T., Mileykovskaya, E., Margolin, W., Dowhan, W., and Fishov, I. (2008b). Mutual effects of MinD-membrane interaction: II. Domain structure of the membrane enhances MinD binding. Biochimica et Biophysica Acta (BBA) - Biomembranes 1778, 2505-2511.
75. Meacci, G., Ries, J., Fischer-Friedrich, E., Kahya, N., Schwille, P., and Kruse, K. (2006). Mobility of Min-proteins in Escherichia coli measured by fluorescence correlation spectroscopy. Physical biology 3, 255-263.
76. Meinhardt, H. (2008). Models of biological pattern formation: from elementary steps to the organization of embryonic axes. Current topics in developmental biology 81, 1-63.
77. Meinhardt, H. (2012). Turing's theory of morphogenesis of 1952 and the subsequent discovery of the crucial role of local self-enhancement and long-range inhibition. Interface focus 2, 407-416.
78. Mercier, R., Dominguez-Cuevas, P., and Errington, J. (2012). Crucial role for membrane fluidity in proliferation of primitive cells. Cell reports 1, 417-423.
79. Mercier, R., Kawai, Y., and Errington, J. (2013). Excess membrane synthesis drives a primitive mode of cell proliferation. Cell 152, 997-1007.
80. Mercker, M., Hartmann, D., and Marciniak-Czochra, A. (2013). A mechanochemical model for embryonic pattern formation: coupling tissue mechanics and morphogen expression. PloS one 8, e82617.
81. Mileykovskaya, E., and Dowhan, W. (2000). Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. Journal of bacteriology 182, 1172-1175.
82. Mileykovskaya, E., Fishov, I., Fu, X., Corbin, B.D., Margolin, W., and Dowhan, W. (2003). Effects of phospholipid composition on MinD-membrane interactions in vitro and in vivo. The Journal of biological chemistry 278, 22193-22198.
83. Miller, C., Thomsen, L.E., Gaggero, C., Mosseri, R., Ingmer, H., and Cohen, S.N. (2004). SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 305, 1629-1631.
84. Monahan, L.G., Liew, A.T., Bottomley, A.L., and Harry, E.J. (2014). Division site positioning in bacteria: one size does not fit all. Frontiers in microbiology 5, 19.
85. Nowak-Sliwinska, P., Weiss, A., Ding, X., Dyson, P.J., van den Bergh, H., Griffioen, A.W., and Ho, C.M. (2016). Optimization of drug combinations using Feedback System Control. Nature protocols 11, 302-315.
86. Oates, A.C., Morelli, L.G., and Ares, S. (2012). Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development (Cambridge, England) 139, 625-639.
87. Park, K.T., Wu, W., Battaile, K.P., Lovell, S., Holyoak, T., and Lutkenhaus, J. (2011). The Min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis. Cell 146, 396-407.
88. Parthasarathy, R., Yu, C.H., and Groves, J.T. (2006). Curvature-modulated phase separation in lipid bilayer membranes. Langmuir : the ACS journal of surfaces and colloids 22, 5095-5099.
89. Pernthaler, J. (2005). Predation on prokaryotes in the water column and its ecological implications. Nature reviews Microbiology 3, 537-546.
90. Ramirez-Arcos, S., Szeto, J., Dillon, J.A., and Margolin, W. (2002). Conservation of dynamic localization among MinD and MinE orthologues: oscillation of Neisseria gonorrhoeae proteins in Escherichia coli. Molecular microbiology 46, 493-504.
91. Ranjit, D.K., and Young, K.D. (2013). The Rcs stress response and accessory envelope proteins are required for de novo generation of cell shape in Escherichia coli. Journal of bacteriology 195, 2452-2462.
92. Raskin, D.M., and de Boer, P.A. (1999a). MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. Journal of bacteriology 181, 6419-6424.
93. Raskin, D.M., and de Boer, P.A. (1999b). Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 96, 4971-4976.
94. Raspopovic, J., Marcon, L., Russo, L., and Sharpe, J. (2014). Modeling digits. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science 345, 566-570.
95. Rather, P.N. (2005). Swarmer cell differentiation in Proteus mirabilis. Environmental microbiology 7, 1065-1073.
96. Renner, L.D., and Weibel, D.B. (2011). Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proceedings of the National Academy of Sciences of the United States of America 108, 6264-6269.
97. Ries, J., Chiantia, S., and Schwille, P. (2009). Accurate determination of membrane dynamics with line-scan FCS. Biophysical journal 96, 1999-2008.
98. Rogers, K.W., and Schier, A.F. (2011). Morphogen gradients: from generation to interpretation. Annu Rev Cell Dev Biol 27, 377-407.
99. Rosen, D.A., Hooton, T.M., Stamm, W.E., Humphrey, P.A., and Hultgren, S.J. (2007). Detection of intracellular bacterial communities in human urinary tract infection. PLoS medicine 4, e329.
100. Roth, S. (2011). Mathematics and biology: a Kantian view on the history of pattern formation theory. Development genes and evolution 221, 255-279.
101. Schätzel, K., Drewel, M., and Stimac, S. (1988). Photon Correlation Measurements at Large Lag Times: Improving Statistical Accuracy. Journal of Modern Optics 35, 711-718.
102. Schweizer, J., Loose, M., Bonny, M., Kruse, K., Monch, I., and Schwille, P. (2012). Geometry sensing by self-organized protein patterns. Proceedings of the National Academy of Sciences of the United States of America 109, 15283-15288.
103. Schwille, P., Meyer-Almes, F.J., and Rigler, R. (1997). Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophysical journal 72, 1878-1886.
104. Serra, D.O., Richter, A.M., and Hengge, R. (2013). Cellulose as an architectural element in spatially structured Escherichia coli biofilms. Journal of bacteriology 195, 5540-5554.
105. Shahzad, K., and Loor, J.J. (2012). Application of Top-Down and Bottom-up Systems Approaches in Ruminant Physiology and Metabolism. Current genomics 13, 379-394.
106. Shen, J.P., and Chou, C.F. (2014). Bacteria under the physical constraints of periodic micro-nanofluidic junctions reveal morphological plasticity and dynamic shifting of Min patterns. Biomicrofluidics 8, 041103.
107. Shih, Y.L., Fu, X., King, G.F., Le, T., and Rothfield, L. (2002). Division site placement in E.coli: mutations that prevent formation of the MinE ring lead to loss of the normal midcell arrest of growth of polar MinD membrane domains. The EMBO journal 21, 3347-3357.
108. Shih, Y.L., Kawagishi, I., and Rothfield, L. (2005). The MreB and Min cytoskeletal-like systems play independent roles in prokaryotic polar differentiation. Molecular microbiology 58, 917-928.
109. Shih, Y.L., Le, T., and Rothfield, L. (2003). Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proceedings of the National Academy of Sciences of the United States of America 100, 7865-7870.
110. Siefert, J.L., and Fox, G.E. (1998). Phylogenetic mapping of bacterial morphology. Microbiology 144 ( Pt 10), 2803-2808.
111. Spratt, B.G., and Cromie, K.D. (1988). Penicillin-binding proteins of gram-negative bacteria. Reviews of infectious diseases 10, 699-711.
112. Stevens, J.M., Galyov, E.E., and Stevens, M.P. (2006). Actin-dependent movement of bacterial pathogens. Nature reviews Microbiology 4, 91-101.
113. Strahl, H., and Hamoen, L.W. (2010). Membrane potential is important for bacterial cell division. Proceedings of the National Academy of Sciences of the United States of America 107, 12281-12286.
114. Szeto, T.H., Rowland, S.L., Habrukowich, C.L., and King, G.F. (2003). The MinD membrane targeting sequence is a transplantable lipid-binding helix. The Journal of biological chemistry 278, 40050-40056.
115. Szwedziak, P., and Lowe, J. (2013). Do the divisome and elongasome share a common evolutionary past? Current opinion in microbiology 16, 745-751.
116. Takeuchi, S., DiLuzio, W.R., Weibel, D.B., and Whitesides, G.M. (2005). Controlling the shape of filamentous cells of Escherichia coli. Nano letters 5, 1819-1823.
117. Thuenauer, R., Juhasz, K., Mayr, R., Fruhwirth, T., Lipp, A.-M., Balogi, Z., and Sonnleitner, A. (2011). A PDMS-based biochip with integrated sub-micrometre position control for TIRF microscopy of the apical cell membrane. Lab on a chip 11, 3064-3071.
118. Tsutsui, H., Valamehr, B., Hindoyan, A., Qiao, R., Ding, X., Guo, S., Witte, O.N., Liu, X., Ho, C.M., and Wu, H. (2011). An optimized small molecule inhibitor cocktail supports long-term maintenance of human embryonic stem cells. Nature communications 2, 167.
119. Typas, A., Banzhaf, M., Gross, C.A., and Vollmer, W. (2012). From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nature reviews Microbiology 10, 123-136.
120. Varma, A., de Pedro, M.A., and Young, K.D. (2007). FtsZ directs a second mode of peptidoglycan synthesis in Escherichia coli. Journal of bacteriology 189, 5692-5704.
121. Varma, A., Huang, K.C., and Young, K.D. (2008). The Min system as a general cell geometry detection mechanism: branch lengths in Y-shaped Escherichia coli cells affect Min oscillation patterns and division dynamics. Journal of bacteriology 190, 2106-2117.
122. Wang, F., Li, Y., Chen, L., Chen, D., Wu, X., and Wang, H. (2012). Mapping of hyperthermic tumor cell death in a microchannel under unidirectional heating. Biomicrofluidics 6, 14120-1412012.
123. Weidemann, T., and Schwille, P. (2013). Dual-color fluorescence cross-correlation spectroscopy with continuous laser excitation in a confocal setup. Methods in enzymology 518, 43-70.
124. Weiner, O.D., Marganski, W.A., Wu, L.F., Altschuler, S.J., and Kirschner, M.W. (2007). An actin-based wave generator organizes cell motility. PLoS biology 5, e221.
125. Weiss, D.S. (2013). Escherichia coli shapeshifters. Journal of bacteriology 195, 2449-2451.
126. White, A.K., VanInsberghe, M., Petriv, O.I., Hamidi, M., Sikorski, D., Marra, M.A., Piret, J., Aparicio, S., and Hansen, C.L. (2011). High-throughput microfluidic single-cell RT-qPCR. Proceedings of the National Academy of Sciences of the United States of America 108, 13999-14004.
127. Wong, P.K., Yu, F., Shahangian, A., Cheng, G., Sun, R., and Ho, C.M. (2008). Closed-loop control of cellular functions using combinatory drugs guided by a stochastic search algorithm. Proceedings of the National Academy of Sciences of the United States of America 105, 5105-5110.
128. Wortinger, M.A., Quardokus, E.M., and Brun, Y.V. (1998). Morphological adaptation and inhibition of cell division during stationary phase in Caulobacter crescentus. Molecular microbiology 29, 963-973.
129. Wu, F., van Schie, B.G., Keymer, J.E., and Dekker, C. (2015). Symmetry and scale orient Min protein patterns in shaped bacterial sculptures. Nature nanotechnology 10, 719-726.
130. Wu, H.W., Lin, C.C., and Lee, G.B. (2011a). Stem cells in microfluidics. Biomicrofluidics 5, 13401.
131. Wu, L.J., and Errington, J. (2012). Nucleoid occlusion and bacterial cell division. Nature reviews Microbiology 10, 8-12.
132. Wu, W., Park, K.T., Holyoak, T., and Lutkenhaus, J. (2011b). Determination of the structure of the MinD-ATP complex reveals the orientation of MinD on the membrane and the relative location of the binding sites for MinE and MinC. Molecular microbiology 79, 1515-1528.
133. Young, K.D. (2006). The selective value of bacterial shape. Microbiology and molecular biology reviews : MMBR 70, 660-703.
134. Young, K.D. (2007). Bacterial morphology: why have different shapes? Current opinion in microbiology 10, 596-600.
135. Young, K.D. (2010). Bacterial shape: two-dimensional questions and possibilities. Annual review of microbiology 64, 223-240.
136. Zieske, K., and Schwille, P. (2013). Reconstitution of pole-to-pole oscillations of min proteins in microengineered polydimethylsiloxane compartments. Angewandte Chemie (International ed in English) 52, 459-462.
137. Zieske, K., and Schwille, P. (2014). Reconstitution of self-organizing protein gradients as spatial cues in cell-free systems. eLife 3.