簡易檢索 / 詳目顯示

研究生: 陳孟壕
Meng-Hao Chen
論文名稱: 微型直接甲醇燃料電池陰極之新式多段式流道
A Novel Multi-Sectional Flow Field for Cathode of µDMFC
指導教授: 王訓忠
Shung-Chung Wong
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 60
中文關鍵詞: 直接甲醇燃料電池即時觀察流場板
外文關鍵詞: DMFC, in-situ observation, flow field plate
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出微型直接甲醇燃料電池之新式多段式流道,製作方式採用微機電以及精密加工製程。在流道設計上,包含了平行流道區、緩衝區以及水回收區。經由初步測試發現,對於此流道設計,親水性表面可提供較佳的水回收能力。在直接甲醇燃料電池陰極端的即時觀察上,發現了液態水在碳布與不鏽鋼網具有不同之行為;此外,陰極端的即時性觀察更進一步發現液態水在平行流道區的傳輸行為。結果顯示,即使在低空氣流量下(<10 ml/min),所有可視化流道皆無阻塞之現象。本研究實驗證明了新式多段式流道確能移除直接甲醇燃料電池中陰極端產生之凝結水,避免凝結水阻塞流道。在直接甲醇燃料單電池的效能測試上,鍍金且流道結構較深之流道板,可較SiO2表面之流道板獲得約4.6倍的最大電流輸出與5.6倍最大功率輸出。


    A novel design of multi-sectional flow field for cathode side of small or micro DMFC is fabricated using MEMS and precision machining processes. The flow field includes a parallel-channel section, buffer zone and recycling channels. The preliminary tests of water wetting process in the flow field show that the flow field with hydrophilic surface can provide a favorable recycling ability. The in-situ observation of actual single DMFC shows the different behaviors of water respectively associated with stainless steel mesh and carbon cloth. Furthermore, the in-situ observation indicates the water transport behavior in the parallel channels. All the channels with observation opening are found to be free from water clogging even at a low air flow rate (< 10 ml/min). This novel flow filed is experimentally demonstrated to handle the water generation and prevent water clogging in the channels. In the test of single DMFC, flow field with gold-plated surface and deeper channel depth can obtain maximum current and power output for about 4.6 and 5.6 times compared with flow field with SiO2-induced surface.

    CONTENTS CONTENTS I LIST OF FIGURES III LIST OF TABLES IV CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND AND MOTIVATION 1 1.2 REVIEW ON THE CATHODE FLOW FIELD AND FLOODING 3 1.2.1 Macro Fuel Cells 3 1.2.2 Small and Micro Fuel Cells 5 1.3 OBJECTIVES 9 CHAPTER 2 FUNDAMENTALS 16 2.1 STRUCTURE OF DMFC 16 2.1.1 Bipolar Plate 16 2.1.2 Gas Diffusion Layer (GDL) 16 2.1.3 Proton Exchange Membrane (PEM) 17 2.1.4 Active Layer 17 2.2 PRINCIPLE OF DMFC 17 2.2.1 Working Principle 17 2.2.2 Polarization Curve 19 2.2.3 Evaluation of Water Production 20 2.3 DRIVING FORCE IN CATHODE-SIDE MICRO-CHANNELS 21 2.3.1 Capillary Driving Force 21 2.3.2 Convective Driving Force 23 CHAPTER 3 DESIGN, FABRICATION AND EXPERIMENTS 26 3.1 DESIGN OF MULTI-SECTIONAL FLOW FIELDS 26 3.2 FABRICATION OF SILICON-BASED MULTI-SECTIONAL FLOW FIELD 27 3.3 EXPERIMENTAL SET-UP 29 3.3.1 Preliminary Observation of Water Wetting Process 29 3.3.2 Set-up for Single DMFC Testing 30 CHAPTER 4 RESULTS AND DISCUSSION 39 4.1 PRELIMINARY TESTS ON SILICON-BASED CHANNELS 39 4.1.1 Wetting Process in Hydrophobic Channels 39 4.1.2 Wetting Process in Hydrophilic Channels 40 4.2 ASSEMBLY OF SINGLE DMFC 41 4.2.1 Integration of DMFC 41 4.2.2 In-situ Visualization of Cathode side for Micro DMFC 42 4.2.3 Performance testing of micro DMFC 44 CHAPTER 5 CONSLUSIONS 56 5.1 CONCLUSIONS 56 5.2 FUTURE WORK 57 REFERENCE 58

    1.Web Site of “Fuel Cell Today”:
    http://www.fuelcelltoday.com/index/
    2.Web Site: http://www.mep.tno.nl/
    3.T. V. Nguyen and R. E. White, “A Water and Heat
    Management Model for Proton-Exchange-Membrane Fuel
    Cells,” Journal of Electrochemical Society, Vol. 140,
    1993, pp 2178–2186.
    4.T. V. Nguyen, “A Gas Distributor Design for Proton
    Exchange Membrane Fuel Cells,” Journal of
    Electrochemical Society, Vol. 143(5), 1996, pp 103-105.
    5.A. Kazim, H. T. Liu, and P. Forges, “Modeling of
    Performance of PEM Fuel Cell with Conventional and
    Interdigitated Flow Fields,” Journal of Applied
    Electrochemistry, Vol. 29, 1999, pp 1409-1416.
    6.A. A. Kulikovsky, “Numerical Simulation of a New
    Operational Regime for a Polymer Electrolyte Fuel Cell,”
    Electrochemistry Communications, Vol. 3, 2001, pp 460-466.
    7.K. T□ber, A. Oedegaard, M. Hermann, and C. Hebling,
    “Investigation of Fractal Flow-fields in Portable Proton
    Exchange Membrane and Direct Methanol Fuel Cells,”
    Journal of Power Sources, Vol. 131, 2004, pp 175-181.
    8. A. Oedegaard, S. Hufschmidt, R. Wilmshoefer, and C.
    Hebling, in: Second European Polymer Electrolyte Fuel
    Cell Forum, Publisher European Fuel Cell Forum,
    Oberrohrdorf, Lucerne, Switzerland, 30 June to 4 July,
    2003.
    9.H. Dohle, R. Jung, N. Kimiaie, J. Mergel, and M. M□ller,
    “Interaction Between the Diffusion Layer and the Flow
    Field of Polymer Electrolyte Fuel Cells---Experiments and
    Simulation Studies,” Journal of Power Sources, Vol. 124,
    2003, pp 371-384.
    10.K. Zhukovsky and A. Pozio, “Maximum Current Limitations
    of the PEM Fuel Cell with Serpentine Gas Supply
    Channels,” Journal of Power Sources, Vol. 130, 2004, 95-
    105.
    11.H. L. Maynard and J. P. Meyers, “Miniature Fuel Cells
    for Portable Power: Design Considerations and
    Challenges,” JVST B Microelectronics and Nanometer
    Structures, Vol. 20(4), 2002, pp 1287-1297.
    12. S. C. Kelley, G. A. Deluga, and W. H. Smyrl,
    “Miniature Fuel Cells Fabricated on Silicon Substrate,”
    AIChE Journal, Vol. 48(5), 2002, pp 1071-1082.
    13. J. Yu, P. Cheng, Z. Ma, and B. Yi, “Fabrication of
    Miniature Silicon Wafer Fuel Cells with Improved
    Performance,” Journal of Power Sources, Vol. 124, 2003,
    pp 40–46.
    14. K. Shah, W.C. Shin, and R.S. Besser, “Novel
    Microfabrication Approaches for Directly Patterning PEM
    Fuel Cell Membranes,” Journal of Power Sources, Vol.
    123, 2003, pp 172-181.
    15. S. W. Cha, S. J. Lee, Y. I. Park, and F. B. Prinz,
    “Investigation of Transport Phenomena in Micro Flow
    Channels for Miniature Fuel Cells,” Fuel Cell Science,
    Engineering and Technology, FUEL CELL2003-1709, ASME,
    2003, pp 143-148.
    16. G. Q. Lua, C. Y. Wang, T. J. Yen, and X. Zhang,
    “Development and Characterization of a Silicon-based
    Micro Direct Methanol Fuel Cell,” Electrochimica Acta,
    Vol. 49, 2004, pp 821–828.
    17. M. M□ller, C. M□ller, F. Gromball, M. W□lfle, and W.
    Menz, “Micro-structured Flow Fields for Small Fuel
    Cells,” Microsystem Technologies, Vol. 9, 2003, pp 159-
    162.
    18. T. Zhang, P.-W. Li, Q.-M. Wang, L. Schaefer, and M. K.
    Chyu, “Fabrication and Performance Evaluation of
    Miniaturized Proton Exchange Membrane(PEM) Fuel Cells,”
    Fuel Cell Science, Engineering and Technology, FUEL
    CELL2003-1709, ASME, 2003, pp 129-136.
    19. S. S. Hsieh, J. K. Kuo, C. F. Hwang, and H. H. Tsai,
    “A Novel Design and Microfabrication for a Micro
    PEMFC,” Microsystem Technologies, Vol. 10 , 2004, pp
    121–126.
    20. S. W. Cha, R. O’Hayre, Y. Saito, and F. B. Prinz,
    “The Scaling Behavior of Flow Patterns: A Model
    Investigation,” Journal of Power Sources, Vol. 134,
    2004, pp 57-71.
    21. M. M. Mench, Z. H. Wang, K. Bhatia, and C. Y. Wang,
    “Design of a Micro Direct Methanol Fuel Cell
    (µDMFC),” Proceedings of the IMECE’01, New York, New
    York USA November 11-16, 2001.
    22. S. Motokawa, M. Mohamedi, T. Momma, S. Shoji, and S.
    Shoji, “MEMS-based Design and Fabrication of a New
    Concept Micro Direct Methanol Fuel Cell,”
    Electrochemistry Communications, Vol. 6, 2004, pp. 562-
    565.
    23. X. G. Yang, F. Y. Zhang, A. L. Lubawy, and C. Y. Wang,
    “Visualization of Liquid Water Transport in a PEFC,”
    Electrochemical and Solid-State Letters, Vol. 7(11),
    2004, A408-411.
    24.A. Taniguchi and K. Yasuda, “Highly Water-proof Coating
    of Gas Flow Channels by Plasma Polymerization for PEM
    Fuel Cells,” Journal of Power Sources, Vol. 141, 2005,
    pp. 8-12.
    25.J. Liu, G. Sun, F. Zhao, G. Wang, G. Zhao, L. Chen, B.
    Yi, and Q. Xin, “Study of Sintered Stainless Steel
    Fiber Felt as a Gas Diffusion Backing in Air-Breathing
    DMFC,” Journal of Power Sources, Vol. 133, 2004, pp.
    175-180.
    26.E. Birgersson, “Mathematical Modeling of Transport
    Phenomena in Polymer Electrolyte and Direct Methanol
    Fuel Cells,” Doctoral Thesis, Stockholm, Sweden, 2004.
    27.X. Ren and S. Gottesfeld, “Electro-osmotic Drag of
    Water in Poly (perfluorosulfonic acid) Membranes,”
    Journal of the Electrochemical Society, Vol. 148, 2001,
    A87-A93.
    28.J. Larminie and A. Dicks, “Fuel Cell Systems
    Explained,” Wiley, West Sussex, England, 2000, ISBN: 0
    471 49026 1.
    29.J. S. Cowart, “An Experimental and Modeling Based
    Investigation into the High Stoichiometric Flow Rates
    Required in Direct Methanol Fuel Cells,” Journal of
    Power Sources, Vol. 143, 2005, pp. 30-35.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE