簡易檢索 / 詳目顯示

研究生: 黃建人
Chien-Jen Huang
論文名稱: 寬頻分碼多工存取/高速資料封包下傳通訊之基頻收發機
A WCDMA/HSDPA Baseband Transceiver
指導教授: 馬席彬
Hsi-Pin Ma
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: (中) 10 (英) 128
中文關鍵詞: 高速下傳封包接收寬頻分碼多工存取多重判斷偵測匹配濾波器收發機基頻
外文關鍵詞: HSDPA, WCDMA, Multiple-dwell Detection, Matched filter, Transceiver, Baseband
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要討論 3GPP (Release 4 and Release 5)文件中提出的高速下傳封包接收(HSDPA)系統及其基頻收發機處理器架構設計、電路設計之研究。

    論文內容先對行動通訊系統及分碼多工存取技術做簡介,之後對整個 3GPP 寬頻分碼多工存取(WCDMA)傳輸系統及高速下傳封包接收技術做敘述介紹。在接收機設計方面,對於每一個接收機所用到的接收技術,著重在演算法的採用與最佳化電路設計,以便達到實作上能夠盡量減少在面積及功率消耗上的需求。

    在無線通道估測中,我們採用了多重判斷偵測(Multiple-dwell Detection)方式來降低通道估測器的中匹配濾波器(Matched Filter)的複雜度與功率消耗。另外對於在資料傳輸中所遭遇到的載波頻率及取樣時脈誤差,我們也提出相對應且較實際的補償架構。最後在接收資料回復上,採取時域(Time Domain)上的最小均方適應性等化(LMS Adaptive Equalization)來取代傳統展頻通訊中較常用的犁耙式接收(Rake Combining)以有效的對抗多路徑效應所造成的符際間干擾(ISI)。最後利用多組相關器(Correlator)來對多重展頻碼傳輸的接收資料做解展頻動作。

    整個收發機系統的模擬則是透過所建立的無線通道模組來模擬資料從發射機到接收機端之間所遭受到的通道不理想效應以及收發端載波頻率、取樣時脈的不匹配現象。而通道的多路徑衰減傳播條件則是採用3GPP 中所提供的模擬環境。

    最後我們從所提出的電路架構對整個收發機設計在硬體考量上扮演較重要角色的兩個部分: 匹配濾波器、最小均方適應性等化器做初步定量的比較與評估。透過這些比較評估可較清楚了解匹配濾波器電路經演算法的改善可以達到硬體面積與功率損耗的減省以及在之後整個收發機於電路設計實作所要著重的地方。


    In this thesis, WCDMA communication systems and HSDPA systems are presented. Then, we propose a baseband transceiver architecture for HSDPA communication systems and its circuit design.

    In order to improve the transmission data rate in downlink WCDMA communication systems, 3GPP has proposed HSDPA communication systems in Release 4 and Release 5 documents. After system specification description, a baseband transceiver for HSDPA communication systems is proposed. In this proposed transceiver, we focus on receiver design. We use Common Pilot Channel (CPICH) to achieve channel estimation and restore High-Speed Share Control Channel (HS-SCCH) and High-Speed Physical Downlink Share Channel (HS-PDSCH) data. Receiver can mainly be divided into four parts: synchronization, equalization, de-spreading and symbol recovery. The synchronization part includes a channel estimator, a carrier frequency synchronization, and a timing synchronization. In channel estimator, the multiple-dwell detection is introduced to minimize the size and power consumption of matched filter. Besides, applicable algorithms is adopted to design the frequency synchronization loop, timing synchronization loop, and adaptive equalizer base on low cost and practical criterion but without losing performance even better. The detail architecture and algorithm of each reception technique in receiver will be presented in the thesis.

    After system functional simulation based on propagation conditions of multi-path Doppler fading environment in 3GPP for HSDPA with carrier frequency and timing offset inserted, the circuit design of the proposed HSDPA transceiver will be mentioned.

    Matched filter and time domain LMS equalizer are the dominant components in receiver. Via coarse comparison and evaluation of the hardware cost and computation complexity, hardware reduction from modified detection algorithm and the emphasis of hardware implementation of whole receiver can be addressed clearly. Finally, some future works and the conclusions of this thesis will be given.

    Contents 1 Introduction 1 1.1 Overview of Mobile Communication Systems . . . 1 1.2 Concepts of Code Division Multiple Access Technique . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Motivation of the Thesis . . . . . . . . . . . 6 1.4 Organization of the Thesis . . . . . . . . . 8 2 System Description 9 2.1 WCDMA/HSDPA System Overview . . . . . . . . . 9 2.1.1 WCDMA. . . . . . . . . . . . . . . . . . . . 9 2.1.2 HSDPA. . . . . . . . . . . . . . . . . . . . . 10 2.2 Channel of WCDMA/HSDPA . . . . . . . . . . . . 15 2.3 Spreading and Scrambling . . . . . . . . . . . 25 2.3.1 Modulation . . . . . . . . . . . . . . . . . 25 2.3.2 Channelization Code and Scrambling Code . . . 27 2.4 Code Generation and Code Allocation . . . . . 27 2.5 System Specification . . . . . . . . . . . . . 31 3 Architecture Design 33 3.1 Transmitter . . . . .. . . . . . . . . . . . . 33 3.2 Receiver . . . . . . . . . . . . . . . . . . . 35 3.2.1 General Description . . . .. . . . . . . . . 35 3.2.2 Channel Estimator . . . . . . . . . . . . . 37 3.2.3 Carrier Frequency Synchronization . . . . . . 47 3.2.4 Timing Synchronization . . . . . . . . . . . 52 3.2.5 Equalization and De-spreading . . . . . . . . 59 4 Functional Simulation 73 4.1 Channel Model . . . . . . . . . . . . . . . . 73 4.1.1 Reception Problems in Receiver . . . . . . . 74 4.1.2 Proposed Channel Model . . . . . . . . . . . 78 4.2 Functional Simulation of Proposed Receiver . . 79 4.2.1 Floating-point Simulation . . . . . . . . . . 79 4.2.2 Fixed-point Simulation . . . . . . . . . . . 90 5 Circuit Design 95 5.1 Transmitter . . . . . . . . . . . . . . . . . 95 5.2 Receiver . . . . . . . . . . . . . . . . . . . 97 5.2.1 Channel Estimator . . . . . . . . . . . . . . 97 5.2.2 Carrier Frequency Recovery Loop . . . . . . . 107 5.2.3 Timing Recovery Loop . . . . . . . . . . . . 111 5.2.4 Equalization and De-spreading . . . . . . . . 114 5.3 Analysis . . . . . . . . . . . . . . . . . . . 115 6 Future Works and Conclusions 121 6.1 Future Works . . . . . . . . . . . . . . . . . 121 6.2 Conclusions . . . . . . . . . . . . . . . . . 123

    [1] Simon Haykin, Communication Systems 4th-ed., Wiley, New York, 2001.

    [2] J. S. Blogh and Lajos Hanzo, Third-Generation Systems and Intelligent Wireless Networking: Smart Antennas and Adaptive Modulation, Wiley, New York, 2002.

    [3] H. P. Ma, M. L. Liou, and T. D. Chiueh, “123-mW W-CDMA uplink baseband receiver IC with beamforming capability,” IEEE J. Solid-State Circuits, Vol. 39, pp. 785-794, May 2004.

    [4] R. Love, A. Ghosh, R. Nikides, L. Jalloul, M. Cudak, and B. Classon, “High Speed Downlink Packet Access Performance,” VTC 2001, Vol. 3, pp. 2234-2238, May 2001.

    [5] M. Assaad and D. Zeghlache, “Comparison Between MIMO Techniques in UMTS-HSDPA System,” IEEE Int. Symp. Spread Spectrum Techniques and Applications, pp. 874-878, Sept. 2004.

    [6] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A 24Mb/s Radix-4 LogMAP Turbo Decoder for 3GPP-HSDPA Mobile Wireless,” ISSCC 2003, Vol. 1, pp. 150-184, 2003.

    [7] W. Haifeng Wang, V. Haikalo, and J. Lilleberg, “Advanced High Speed Packet Access Receiver for WCDMA Multicode Transmission with High-order Modulation,” IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications 2002, Vol. 3, pp. 1068-1072, 2002.

    [8] P. Lin, Y. B. Lin and I. Chlamtac, “Overflow Control for UMTS High-Speed Downlink Packet Access,” IEEE Trans. Wireless Communications, Vol. 3, pp. 524-532, March 2004.

    [9] 3GPP TSG RAN, (1999, April). User Equipment (UE) radio transmission and reception (FDD) (Release 99), TS 25.101 v1.0.0.
    Available: http://www.3gpp.org/ftp/Specs/html-info/25101.htm.

    [10] 3GPP TSG RAN, (1999, April). Base Station (BS) radio transmission and reception (FDD) (Release 99), TS 25.104 v1.0.0.
    Available: http://www.3gpp.org/ftp/Specs/html-info/25104.htm.

    [11] 3GPP TSG RAN, (1999, June). Physical layer-General description (FDD) (Release 99), TS 25.201 v2.1.0.
    Available: http://www.3gpp.org/ftp/Specs/html-info/25201.htm.

    [12] 3GPP TSG RAN, (1999, April). Physical channels and mapping of transport channels onto physical channels (FDD) (Release 99), TS 25.211 v2.0.0. Available: http://www.3gpp.org/ftp/Specs/html-info/25211.htm.

    [13] 3GPP TSG RAN, (1999, June). Multiplexing and channel coding (FDD) (Release 99), TS 25.212 v2.0.0.
    Available: http://www.3gpp.org/ftp/Specs/html-info/25212.htm.

    [14] 3GPP TSG RAN, (1999, June). Spreading and Modulation (FDD) (Release 99), TS 25.213 v2.1.0.
    Available: http://www.3gpp.org/ftp/Specs/html-info/25213.htm.

    [15] 3GPP TSG RAN, (1999, Oct.). Physical layer procedures (FDD) (Release 99), TS 25.214 v3.0.0.
    Available: http://www.3gpp.org/ftp/Specs/html-info/25214.htm.

    [16] 3GPP TSG RAN, (2004, Dec.). UTRA High Speed Downlink Packet Access (HSDPA); Overall description; Stage2 (FDD) (Release 5), TS 25.308 v5.7.0. Available: http://www.3gpp.org/ftp/Specs/html-info/25308.htm.

    [17] 3GPP TSG RAN, (2001, Oct.). High Speed Downlink Packet Access (HSDPA); Overall UTRAN description (FDD) (Release 5), TS 25.855 v3.0.0. Available: http://www.3gpp.org/ftp/Specs/html-info/25855.htm.

    [18] 3GPP TSG RAN, (2002, June). High Speed Downlink Packet Access (HSDPA); -lub/lur Protocol Aspects (FDD) (Release 5), TS 25.877 v5.1.0. Available: http://www.3gpp.org/ftp/Specs/html-info/25877.htm.

    [19] 3GPP TSG RAN, (2001, April). Physical Layer Aspects of UTRA High Speed Downlink Packet Access (FDD) (Release 4), TR 25.848 v4.0.0.
    Available: http://www.3gpp.org/ftp/Specs/html-info/25848.htm.

    [20] Harri Holma and Antti Toskala, WCDMA for UMTS, 2nd Edition, Wiley, Sept. 2002.

    [21] Roger L. Peterson, Rodger E. Ziemer, and David E. Borth, Introduction to Spread-Spectrum Communications, Prentices Hall, 1995.

    [22] Charles Chien, Digital Radio Systems on a Chip: a Systems Approach, Kluwer Academic Publishers, 2001.

    [23] D. M. DiCarlo and C. L. Weber, “Multiple Dwell Derial Search: Performance and Application to Direct Sequence Code Acquisition,” IEEE Trans. Communications, Vol. 31, pp. 650-659, May 1983.

    [24] M. L. Liou and T. D. Chiueh, “A Low-Power Digital Matched Filter for Direct-Sequence Spread-Spectrum Signal Acquisition,” IEEE Journal of Solid-State Circuits, Vol. 36(6), pp. 933-943, June 2001.

    [25] S. Goto, T. Yamada, N. Takayama, and H. Yasuura, “A Design for A Low-power Digital Matched Filter Applicable to W-CDMA,” 2002 Euromicro Symposium on Digital System Design, pp. 210-217, 4-6 Sept. 2002.

    [26] Sundararajan Sriram, Katherine Brown, and Anand Dabak, “ Low-power Correlator Architectures for Wideband CDMA Code Acquisition,” IEEE conf. Signals, Systems, and Computers, Oct. 1999.

    [27] W. Namgoong and T. H. Meng et al., “Minimizing Power Consumption in Direct Sequence Spread Spectrum Correlators by Resampling IF Samples-Part II: Implementation Issues,” IEEE Trans. Circuit Syst. II, Vol. 48, pp. 460-470, May 2001.

    [28] J. G. Proakis, Digital Communications, McGraw-Hills, New York, 1995.

    [29] H. Meyr, M. Moeneclaey, and S. Fechtel, Digital Communication Receivers: Synchronization, Channel Estimation and Signal Processing, Wiley, New York, 1997.

    [30] F. M. Gardner, “Interpolation in Digital Modems-Part Ⅰ: Fundamentals,” IEEE Trans. Communications, Vol. 41, pp 501-507, March 1993.

    [31] L. Erup, F. M. Gardner, and R. A. Harris, “Interpolation in Digital Modems-Part Ⅱ: Implementation and Performance,” IEEE Trans. Communications, Vol. 41, pp. 998-1008, June 1993.

    [32] S. U. H. Qureshi, “Adaptive Equalization,” Proceedings of the IEEE, Vol. 73, No. 9, Sept. 1985.

    [33] C. A. Belfiore and J. H. Park, Jr., “Decision Feedback Equalization,” Proceedings of the IEEE, Vol. 67, pp. 1143-1156, Aug. 1979.

    [34] Todd K. Moon, and Wynn C. Stirling, Mathematical Method and Algorithms for Signal Processing, PRENTICE HALL, 2000.

    [35] J. Bhasker, A SystemC Primer, Star Galaxy Publisher, 2002.

    [36] J. K. Holmes, Coherent Spread Spectrum System, Wiely, New York, 1982.

    [37] M. D. Ercegovac and T. Lang, Digital Arithmetic, Morgan Kaufmann, 2004.

    [38] D. Samardzija, A. Lozano, and C. Papadias, “Experimental Validation of MIMO Multiuser Detection for UMTS High-Speed Downlink Packet Access,” IEEE GLOBECOM’04, Vol. 6, pp. 3840-3844, Dec. 2004.

    [39] D. Huaiyu and H. V. Poor, “Iterative Space-time Processing for Multiuser Detection in Multipath CDMA channels,” IEEE Trans. Signal Processing, Vol. 50, pp. 2116-2127, Sept. 2002.

    [40] Ari Hottinen, Olav Tirkkonen, and Risto Wichman, Multi-antennas Transceiver Techniques for 3G and Beyond, Wiley, New York, March 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE