研究生: |
呂家儒 Lu, Chia-Ru |
---|---|
論文名稱: |
相容奈米邏輯製程之耦合浮動閘極光感測元件 A Study of CMOS Process MOM Coupled Floating gate Light Detector |
指導教授: |
金雅琴
King, Ya-Chin |
口試委員: |
林崇榮
Lin, Chrong-Jung 施教仁 Shih, Chiao-Jen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 光感測元件 、浮動閘極 |
外文關鍵詞: | light detector, floating gate |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自21世紀以來,科技快速發展,其中半導體技術也急速進步,使高科技產業高速地發展,深深影響人類的生活習慣,諸如 : 看電視變成線上追劇、底片變成雲端相簿、2D遊戲變成沉浸式3D遊戲,更不用說目前急速發展的AI、互聯網、虛擬實境等先進技術,都與半導體發展有著極大的關係。
在現代半導體工藝中,微影製程(lithography) [1]是積體電路中推動工藝中關鍵尺寸 (CD) 縮小的最重要工藝之一,其中 DUV / EUV 和電子束等能源變得不可或缺。原則上,微影製程(lithography)旨在通過光罩、光阻劑和曝光能源的系統組合,在晶圓的特定區域(幾厘米)上轉移一系列範圍(幾十毫米)內的微小光罩圖案(幾納米)。在最先進的CMOS製成技術中,深紫外光 (DUV) 是其光刻系統中核心,因此在投影平面上獲得 DUV 曝光信息的反饋至關重要。傳統傳感器,如電荷耦合器件(Charge-coupled Device, CCD) 和主動式像素感測器(Active Pixel Sensor, APS),利用位能井和/或浮動電位來收集由光電效應引起的光電子,通常需要有專門的製程技術實現。這篇論文,提出了一種 DUV 耦合浮動閘極光感測元件,具有 CMOS 製程的兼容性、無須外加電源和晶圓上曝光強度分布收集的優點。
除此之外,本論文也提出一種能提高元件光反應靈敏度的方法,利用一維連續光柵抗反射奈米結構,降低DUV反射率,進而達到提高光電反應量子效應的結果,以此進一步提高元件靈敏度,且此概念能利用在諸多會使用的光電反應的系統中。
Since the 21st century, the rapid development of technology, including the rapid progress of semiconductor technology, has led to the rapid development of high-tech industries, which has deeply affected the living habits of human beings, such as: watching TV has become an online drama, negatives have become cloud albums, and 2D games have become immersive 3D games, not to mention the rapidly developing advanced technologies such as AI, the internet, and virtual reality, have a great relationship with the development of semiconductors.
In modern semiconductor processes, lithography is one of the most important procedures in integrated circuit to push the shrinking of critical dimensions (CD) in CMOS processes, in which energy sources such as DUV/ EUV and eBeam become indispensable. In principle, lithography[1] technology is designed to transfer a series of tiny masking patterns (few nm) within a wide range (tens mm) of a specific area (few cm) on wafers by a systematic combination of photomask, photoresist, and light source for exposure. In state-of-art nanometer CMOS technologies, Deep Ultraviolet light (DUV) is in the core of its lithography systems, so obtaining feedback of the DUV exposure information on the projected plane is critical. Conventional sensors, i.e., Charge-coupled devices (CCD) and Active Pixel Sensor (APS), utilizing potential wells and/or floating nodes for collecting photo-electrons induced by photoelectric effect, are normally realized by specialized processes. In this paper, we proposed a DUV detector, which has advantages of CMOS compatibility, battery-less and on-wafer DUV information collection.
In addition, this paper also proposes a method that can improve the photoreaction sensitivity of the detector, using one-dimensional continuous grating anti-reflection nanostructures to reduce DUV reflectivity, and then achieve the result of improving the quantum efficiency, so as to increase the device sensitivity. By reducing reflectivity of DUV can increase the efficiency of the conversion between electron and photon light, in turn, improve the device sensitivity. This concept can be exploited in many systems where photoelectric effect is used.
[1] C. -P. Wang et al., "On-Wafer FinFET-Based EUV/eBeam Detector Arrays for Advanced Lithography Processes," in IEEE Transactions on Electron Devices, vol. 67, no. 6, pp. 2406-2413, June 2020, doi: 10.1109/TED.2020.2987442. S. Wurm, "EUV Lithography," Proceedings of Technical Program - 2014 International Symposium on VLSI Technology, Systems and Application (VLSI- TSA), Hsinchu, 2014, pp. 1-2, doi: 10.1109/VLSI-TSA.2014.6839652.
[2] C. Putnam, J. K. Tyminski, R. Batterson and A. Gallo, "Alignment optimization and residual analysis for critical DUV photolithography," 10th Annual IEEE/SEMI. Advanced Semiconductor Manufacturing Conference and Workshop. ASMC 99 Proceedings (Cat. No.99CH36295), 1999, pp. 378-387, doi: 10.1109/ASMC.1999.798269.
[3] Y. Teramoto, Z. Narihiro, D. Yamatani and T. Yokoyama, "Tin-Fueled High-Repetition-Rate Z-pinch EUV Source for Semiconductor Lithography," 2007 IEEE 34th International Conference on Plasma Science (ICOPS), 2007, pp. 611-611, doi: 10.1109/PPPS.2007.4345917.
[4] H. Komori, T. Abe, T. Suganuma, Y. lmai and H. Someya, "Progress of a laser-produced-plasma light source for EUV lithography," Digest of Papers Microprocesses and Nanotechnology 2003. 2003 International Microprocesses and Nanotechnology Conference, 2003, pp. 276-, doi: 10.1109/IMNC.2003.1268753.
[5] Y. G. Liu, W. J. Wang, S. W. Luo, Z. L. Jiang and J. L. Pu, "Studying on electron beam lithography technology," 2001 6th International Conference on Solid-State and Integrated Circuit Technology. Proceedings (Cat. No.01EX443), Shanghai, China, 2001, pp. 472-474 vol.1, doi: 10.1109/ICSICT.2001.981520.
[6] A. A. Tseng, Kuan Chen, C. D. Chen and K. J. Ma, "Electron beam lithography in nanoscale fabrication: recent development," in IEEE Transactions on
甲、 Electronics Packaging Manufacturing, vol. 26, no. 2, pp. 141-149, April 2003, doi: 10.1109/TEPM.2003.817714.
[7] M. Liu, Y. L. Qiu, B. Q. Chen, Q. X. Xiu and Y. K. Zheng, "Electron beam lithography and its application in fabricating nano-device," Proceedings. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004., Beijing, China, 2004, pp. 563-566 vol.1, doi: 10.1109/ICSICT.2004.1435069.
[8] F. S. Ozdemir, "Electron Beam Lithography," 16th Design Automation Conference, San Diego, CA, USA, 1979, pp. 383-391, doi: 10.1109/DAC.1979.1600141.
[9] Z. Fu, S. J. Zhang, Y. Huang and Y. S. Lin, "Evaluation of Mask Fidelity using automated edge placement error measurement with CD-SEM images," 2015 China Semiconductor Technology International Conference, Shanghai, 2015, pp. 1-3, doi: 10.1109/CSTIC.2015.7153359.
[10] M. Fallon, J. T. M. Stevenson, A. Walton and A. M. Gundlach, "An electrical test structure to evaluate linewidth variations due to proximity effects in optical lithography," Proceedings International Conference on Microelectronic Test Structures, 1995, pp. 33-38, doi: 10.1109/ICMTS.1995.513941.
[11] H. Li and Y. R. Chen, "An overview of non-volatile memory technology and the implication for tools and architectures," 2009 Design, Automation & Test in Europe Conference & Exhibition, Nice, 2009, pp. 731-736, doi: 10.1109/DATE.2009.5090761.
[12] E. I. Vatajelu, H. Aziza and C. Zambelli, "Nonvolatile memories: Present and future challenges," 2014 9th International Design and Test Symposium (IDT), Algiers, 2014, pp. 61-66, doi: 10.1109/IDT.2014.7038588.
[13] P. Cappelletti, "Non volatile memory evolution and revolution," 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, 2015, pp. 10.1.1-10.1.4, doi: 10.1109/IEDM.2015.7409666.
[14] A. T. Wu, T. Y. Chan, P. K. Ko and C. Hu, "A source-side injection erasable programmable read-only-memory (SI-EPROM) device," in IEEE Electron Device Letters, vol. 7, no. 9, pp. 540-542, Sept. 1986, doi: 10.1109/EDL.1986.26465.
[15] D. Y. Zang and V. M. Ristic, "All-optical erasable programmable read-only memory (EPROM) based on LiNbO/sub 3/ channel waveguides," in IEEE Photonics Technology Letters, vol. 1, no. 10, pp. 323-326, Oct. 1989, doi: 10.1109/68.43362.
[16] B. Rossler, "Electrically erasable and reprogrammable read-only memory using the n-channel SIMOS one-transistor cell," in IEEE Transactions on Electron Devices, vol. 24, no. 5, pp. 606-610, May 1977, doi: 10.1109/T-ED.1977.18788.
[17] P. Pavan, R. Bez, P. Olivo and E. Zanoni, "Flash memory cells-an overview," in Proceedings of the IEEE, vol. 85, no. 8, pp. 1248-1271, Aug. 1997, doi: 10.1109/5.622505.
[18] R. Bez, E. Camerlenghi, A. Modelli and A. Visconti, "Introduction to flash memory," in Proceedings of the IEEE, vol. 91, no. 4, pp. 489-502, April 2003, doi: 10.1109/JPROC.2003.811702.
[19] R. Bez and P. Cappelletti, "Flash memory and beyond," IEEE VLSI-TSA International Symposium on VLSI Technology, 2005. (VLSI-TSA-Tech)., Hsinchu, 2005, pp. 84-87, doi: 10.1109/VTSA.2005.1497090.
[20] A. Luštica, "CCD and CMOS image sensors in new HD cameras," Proceedings ELMAR-2011, Zadar, 2011, pp. 133-136.
[21] P. P. Gelberger and C. A. T. Salama, "A uniphase charge-coupled device," in Proceedings of the IEEE, vol. 60, no. 6, pp. 721-722, June 1972, doi: 10.1109/PROC.1972.8729.
[22] M. F. Tompsett et al., "Charge-coupled imaging devices: Experimental results," in IEEE Transactions on Electron Devices, vol. 18, no. 11, pp. 992-996, Nov. 1971, doi: 10.1109/T-ED.1971.17321.
[23] C. Chang, J. D. Segal, A. J. Roodman, R. T. Howe and C. J. Kenney, "Multiband charge-coupled device," 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), Anaheim, CA, 2012, pp. 743-746, doi: 10.1109/NSSMIC.2012.6551202.
[24] A. Dickinson, B. Ackland, E. -. Eid, D. Inglis and E. R. Fossum, "Standard CMOS active pixel image sensors for multimedia applications," Proceedings Sixteenth Conference on Advanced Research in VLSI, Chapel Hill, NC, USA, 1995, pp. 214-224, doi: 10.1109/ARVLSI.1995.515622.
[25] S. Jo, M. Bae, J. Jung and J. Shin, "CMOS active pixel sensor with variable dynamic range using a double-photodiode feedback structure," 2011 IEEE International Instrumentation and Measurement Technology Conference, Binjiang, 2011, pp. 1-4, doi: 10.1109/IMTC.2011.5944353.
[26] X. Qian, H. Yu, S. Chen and K. S. Low, "Design and characterization of radiation-tolerant CMOS 4T Active Pixel Sensors," 2014 International Symposium on Integrated Circuits (ISIC), Singapore, 2014, pp. 520-523, doi: 10.1109/ISICIR.2014.7029449.
[27] S. Mendis, S. E. Kemeny and E. R. Fossum, "CMOS active pixel image sensor," in IEEE Transactions on Electron Devices, vol. 41, no. 3, pp. 452-453, March 1994, doi: 10.1109/16.275235.
[28] H. Melchior, M. B. Fisher and F. R. Arams, "Photodetectors for optical communication systems," in Proceedings of the IEEE, vol. 58, no. 10, pp. 1466- 1486, Oct. 1970, doi: 10.1109/PROC.1970.7972.
[29] J. C. Campbell, "Recent Advances in Avalanche Photodiodes," in Journal of Lightwave Technology, vol. 34, no. 2, pp. 278-285, 15 Jan.15, 2016, doi: 10.1109/JLT.2015.2453092.
[30] G. E. Stillman, L. W. Cook, N. Tabatabaie, G. E. Bulman and V. M. Robbins, "InGaAsP photodiodes," in IEEE Transactions on Electron Devices, vol. 30, no. 4, pp. 364-381, April 1983, doi: 10.1109/T-ED.1983.21131.
[31] E. P. Vandamme, P. Jansen and L. Deferm, "Modeling the subthreshold swing in MOSFET's," in IEEE Electron Device Letters, vol. 18, no. 8, pp. 369-371, Aug. 1997, doi: 10.1109/55.605442.
[32] L. Xie, S. Zheng, J. H. Lee, M. Li, M. Zhang and K. Chien, "FIB & TEM application methods with related theory explanations," 2017 IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), 2017, pp. 1-6, doi: 10.1109/IPFA.2017.8060137.
[33] https://www.ma-tek.com/zh-TW/services/index/FIB