簡易檢索 / 詳目顯示

研究生: 黃誠熙
Huang, Cheng-Hsi
論文名稱: 分子動力學模擬研究:溶液中脂雙層之相變化行為與奈米孔洞中懸浮脂雙層在外力作用下之穩定度與破壞機制
Molecular dynamic simulation study: the phase transition of lipid membranes in solution and the stability and fracture mechanism of a suspended bilayer lipid membrane
指導教授: 蕭百沂
Hsiao, Pai-Yi
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 67
中文關鍵詞: 分子動力學模擬脂雙層機械性質相變化懸浮奈米孔洞原子力顯微鏡
外文關鍵詞: MD simulation, lipid bilayer, mechanical property, phase transition, suspended, nano pore, AFM
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了瞭解邊緣貼附於疏水基板上而懸浮於奈米孔洞中之脂雙層受到AFM探針壓迫和刺入過程的現象與機制,我們使用分子動力學模擬(molecular dynamic simulation)進行研究。本次工作從脂雙層基本性質的研究開始,模擬一大片的脂雙層(lipid bilayer in bulk) (無基板支撐)在溶劑中的行為,我們計算膜厚度、單位脂質面積,以及秩序參數(order parameter),發現從低溫到高溫依序出現傾斜膠態(tilted gel state, )、叉合膠態(interdigitated gel state, ),以及液態(liquid state, ),除了膠態到液態的主要相變化(main transition)之外,亦觀察到傾斜膠態和叉合膠態的相變化。此相變化研究的結果與許多文獻類似,故可說明本研究的模型與設定之真實性。第二部份為懸浮脂雙層的AFM壓刺研究,將脂雙層自然的成長於疏水基板上,使其懸空於孔洞中,並放置一足夠長時間以達到穩定狀態,再將一探針刺入脂雙層。孔洞形狀設計為側壁與基板上方垂直,探針則為一半圓球位於孔洞正中間。從探針接觸脂雙層直到脂雙層完全破壞為止,可以歸納出五個階段:1.脂雙層受力彎曲成圓弧形狀,而脂雙層邊緣在克服阻力之後於基版側璧上滑移,2.脂雙層邊緣達到孔洞底部之後滑移現象停止,彎曲過程則持續進行,3.脂雙層在中央偏左的區域發生底部單層破裂,此區域脂質分子混亂分佈,4.破裂區域脂質分子重新排列成叉合膠態的規律結構,此結構改變的效應將擴散至鄰近區域而造成大面積的相變化行為,5.叉合膠態與傾斜膠態區域的連接處不穩定,最終造成脂雙層的完全破裂。脂雙層在基板側壁上的滑動現象首次提出且為出乎意料的結果,此機制消除了垂直的孔洞邊緣下脂雙層的應力集中,而避免脂雙層於側壁上的快速破裂。最後,我們並測量懸浮脂雙層的彈簧常數、最大探針受力,以及最大探針刺入深度,並和實驗值比較,發現非常的吻合,更進一步的說明此次研究對於壓刺過程之現象及破壞機制的歸納是值得信任的。研究中引入Quasi-2D以及phantom solvent等較為新穎的模型設計,在經過此次工作的驗證之後,將可以進一步運用於脂雙層研究領域中的其他工作。


    We perform molecular dynamic simulations to understand the behavior and mechanism of AFM indentation through a lipid bilayer which is suspended by hydrophobic substrate on a nano pore. This work starts from the study of basic properties of lipid bilayer. By simulating lipid bilayer in bulk with solvent environment, we calculate membrane thickness, area per lipid, and order parameter. Three states are found from low temperature to high temperature: tilted gel state, interdigitated gel state, and liquid state. Besides main transition which is from gel state to liquid state, we also observe transition from tilted gel state to interdigitated gel state. The work in phase transition consists with many previous works, which demonstrate the reality of our model and setup. The second part of the work is AFM indentation of suspended lipid bilayer. We build the system with suspended lipid bilayer on a nano pore. After a long period of equilibrium, bilayer is indented by AFM probe. The shape of the side wall of substrate is a straight cliff with 90 degree at its corners. The probe is a half sphere located at the center of the pore. From the contact between the lipid bilayer and the probe, we conclude 5 stages: 1. the pressed lipid bilayer bends to arched curve, while the edges of lipid bilayer slide on the side wall of substrate. 2. The edges of lipid bilayer reach the end of pore on the side wall and stop sliding, while bending continuously proceeds. 3. The breaking at bottom monolayer happens in the center region, which cause chaotic distribution in the region. 4. Lipids at the region of monolayer breaking reform into interdigitated gel structure. 5. The fracture happens at the conjunction between transformed region and non-transformed region due to incongruence between the two regions. The sliding mechanism is mentioned first time and really surprises us. This mechanism eliminates the stress concentration between side wall of substrate and edge of lipid bilayer, and avoids the early breaking at the contact surface. At the end, we calculate the spring constant, maximum force on probe, and maximum depth of indentation. We find the data are in good agreement with experimental result. This further verifies the validity of our study. In the research, we employ some new methods such as Quasi-2D and phantom solvent which can be used in other researches in this field.

    摘要…………………………………………………………………………………………….i Abstract………………………………………………………………………………………..ii誌謝…………………………………………………………………………………………...iii 目錄…………………………………………………………...…………………………….....v 表目錄……………………………………………………...………………………………...vii 圖目錄……………………………………………………...……………………………..…viii 第一章 簡介……………………………………………...…………………………………...1 1.1 脂質分子與脂雙層………………….……......……………………………………..1 1.1 脂雙層之相變化…………………...…..…......……………………………………..2 1.2.1 相變化簡介………………….……..…......………………………………….2 1.2.2 相變化文獻回顧……….……..…......……………………………………….5 1.3 模擬環境………………………......….……………………………………………..6 1.4 機械性質文獻回顧………………......….…………………………………………..8 1.4.1 脂雙層的彈性性質…………......….……………………….………………..9 1.4.2 表面張力………......……...……………………….………………………..10 1.5 研究過程………………………......……………………………………...………..11 第二章 方法與模型……………………………………………...………………………….12 2.1 方法………………………………………………………………………………...12 2.1.1 分子動力學模擬............................................................................................12 2.1.2簡化模型…………………………………………………………………….12 2.1.3 Verlet algorithm……………………………………………………………...13 2.1.4 週期性邊界條件……………………………………………………………14 2.1.5 簡化單位……………………………………………………………………14 2.1.6 LAMMPS……………………………………………………………………14 2.2 模型………………………………………………………………………………...15 2.2.1 Quasi-2D系統……………………………………………………………….15 2.2.2 分子模型……………………………………………………………………16 2.2.2.1 脂質分子…………………………………………………………….16 2.2.2.2 溶劑分子…………………………………………………………….17 2.2.2.3 基板分子與探針分子……………………………………………….17 2.2.3 作用力………………………………………………………………………17 2.2.3.1 Lennard-Jones interaction …………………………………………...18 2.2.3.2 鍵結連接…………………………………………………………….20 2.2.3.3 鏈硬度……………………………………………………………….21 第三章 模擬參數設定………………………………………………………………………22 第四章 結果…………………………………………………………………………………24 4.1 脂雙層相變化探討………………………………………………………………...24 4.1.1 性質計算……………………………………………………………………24 4.1.2 相變化結果與討論…………………………………………………………26 4.2 探針穿刺懸浮脂雙層……………………………………………………………...32 4.2.1 系統介紹……………………………………………………………………32 4.2.2 性質計算……………………………………………………………………34 4.2.3 穿刺過程之現象……………………………………………………………36 4.2.4 機械性質……………………………………………….………………...…55 第五章 結論……………………………………………………………………………...….59 第六章 未來研究方向………………………………………………………………………60 文獻…………………………………………………………………………………………..63

    [1] 陸駿逸,物理雙月刊(廿三卷四期)2001年8月
    [2] Howard R. Petty, Molecular biology of membranes, Plenum press, New York and London, 1993
    [3] Shuangyang Li, Xianren Zhang, Wei Dong, and Wenchuan Wang, “Computer Simulations of Solute Exchange Using Micelles by a Collision-Driven Fusion Process”, Langmuir, 24, 9344, 2008
    [4] Mark J. Stevens, “Coarse-grained simulations of lipid bilayers”, J. Chem. Phys., 121, 11942, 2004
    [5] Olaf Lenz and Friederike Schmid, “A simple computer model for liquid lipid bilayers”, J. of Molecular Liquids, 117, 147, 2005
    [6] Marieke Kranenburg, Maddalena Venturoli, and Berend Smit, “Phase Behavior and Induced Interdigitation in Bilayers Studied with Dissipative Particle Dynamics” J. Phys. Chem. B, 107, 11491, 2003
    [7] Maddalena Venturoli, Maria Maddalena Sperotto, Marieke Kranenburg, and Berend Smit, “Mesoscopic models of biological membranes”, Physics Reports, 437, 1, 2006
    [8] Hitoshi Matsuki, Hiroko Okuno, Fumihiko Sakano, Masataka Kusube, and Shoji Kaneshina, “Effect of deuterium oxide on the thermodynamic quantities associated with phase transitions of phosphatidylcholine bilayer membranes” Biochimica et Biophysica Acta, 1712, 92, 2005
    [9] Marieke Kranenburg, Martin Vlaar, and Berend Smit, “Simulating Induced Interdigitation in Membranes” Biophys. J., 87, 1596, 2004
    [10] Olaf Lenz and Friederike Schmid, “Structure of Symmetric and Asymmetric ‘‘Ripple’’ Phases in Lipid Bilayers”, Phys. Rev. Lett., 98, 058104, 2007
    [11] Maddalena Venturoli, Berend Smit, and Maria Maddalena Sperotto, “Simulation Studies of Protein-Induced Bilayer Deformations, and Lipid-Induced Protein Tilting, on a Mesoscopic Model for Lipid Bilayers with Embedded Proteins”, Biophys. J., 88, 1778, 2005
    [12] Masayoshi Maeshima, “Review: Vacuolar H.-pyrophosphatase”, Biochim. Biophys. Acta 1465, 37, 2000
    [13] Peter L. Pedersen, “Transport ATPases in Biological Systems and Relationship to Human Disease: A Brief Overview”, J. Bioenerget. Biomemb. 34(5), 327, 2002
    [14] J. E. M. McGeoch, M.W. McGeoch, D.J.D. Carter, R. F. Shuman, and G. Guidotti, “Biological-to-electronic interface with pores of ATP synthase subunit C in silicon nitride barrier”, Mechan. Biol. Engin. Comput., 38, 113, 2000
    [15] M. Trojanowicz, “Miniaturized biochemical sensing devices based on planar bilayer lipid membranes”, Fresenius J. Anal. Chem., 371, 246, 2001
    [16] U.B. Sleytr, B. Schuster, and D. Pum, “Nanotechnology and Biomimetics with 2-D Protein Crystals”, IEEE Engin. Med. Biol. Magaz., May/June, 140, 2003
    [17] Christian Hennesthal and Claudia Steinem, “Pore-Spanning Lipid Bilayers Visualized by Scanning Force Microscopy”, J. Am. Chem. Soc., 122, 8085, 2000
    [18] Siegfried Steltenkamp, Martin Michael Muller, Markus Deserno, Christian Hennesthal, Claudia Steinem, and Andreas Janshoff, “Mechanical Properties of Pore-Spanning Lipid Bilayers Probed by Atomic Force Microscopy”, Biophys. J., 91, 217, 2006
    [19] A. Simon, A. Girard-Egrot, F. Sauter, C. Pudda, N. Picollet D’Hahan, L. Blum, F. Chatelain, A. Fuchs, Journal of Colloid and Interface Science, 308, 337, 2007
    [20] Marieke Kranenburg and Berend Smit, “Phase Behavior of Model Lipid Bilayers”, J. Phys. Chem. B, 109, 6553, 2005
    [21] R. Koynova and M. Caffrey, “Phases and phase transitions of the phosphatidylcholines”, Biochim. Biophys. Acta., 1376, 91, 1998
    [22] Siewert J. Marrink, Alex H. de Vries, D. Peter Tieleman, “Lipids on the move: Simulations of membrane pores, domains, stalks and curves”, Biochim. Biophys. Acta., 1788, 149, 2009
    [23] M. Tajparast, M.I. Glavinović, “Forces and stresses acting on fusion pore membrane during secretion”, Biochim. Biophys. Acta., 1788, 1009, 2009
    [24] Mark J. Stevens, Jan H. Hoh and Thomas B. Woolf, “Insights into the Molecular Mechanism of Membrane Fusion from Simulation: Evidence for the Association of Splayed Tails”, Phys. Rev. Lett., 91, 188102, 2003
    [25] Shuangyang Li, Xianren Zhang, Wei Dong, and Wenchuan Wang, “Computer Simulations of Solute Exchange Using Micelles by a Collision-Driven Fusion Process”, Langmuir, 24, 9344, 2008
    [26] L. J. Ellison, D. J. Michel, F. Barmes, and D. J. Cleaver, “Entropy-Driven Formation of the Gyroid Cubic Phase”, Phys. Rev. Lett., 97, 237801, 2006
    [27] Won Bo Lee, Raffaele Mezzenga, and Glenn H Fredrickson, “Anomalous Phase Sequences in Lyotropic Liquid Crystals”, Phys. Rev. Lett., 99, 187801, 2007
    [28] Grace Brannigan, Adele C. Tamboli, Frank L. H. Brown, “The role of molecular shape in bilayer elasticity and phase behavior”, J. Chem. Phys., 121, 3259, 2004
    [29] Olaf Lenz and Friederike Schmid, “Structure of Symmetric and Asymmetric ‘‘Ripple’’ Phases in Lipid Bilayers”, Phys. Rev. Lett., 98, 058104, 2007
    [30] Alex H. de Vries, Serge Yefimov, Alan E. Mark, and Siewert J. Marrink, “Molecular structure of the lecithin ripple phase”, PNAS, 102, 5392, 2005
    [31] Hertz, H., J. Reine Angew. Math., 92, 156, 1881
    [32] Timoshenko, S.P., Goodier, J.N., Theory of Elasticity, McGraw-Hill, Singapore, 1970
    [33] Heıdi Brochu and Patrick Vermette, “Young’s Moduli of Surface-Bound Liposomes by Atomic Force Microscopy Force Measurements”, Langmuir, 24, 2009, 2008
    [34] Johnson, K. L., Contact Mechanics, Cambridge University Press, Cambridge, 1985
    [35] R. E. Mahaffy, C. K. Shih, F. C. MacKintosh, and J. Käs, “Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells”, Phys. Rev. Lett., 85, 880, 2000
    [36] R. E. Mahaffy, S. Park, E. Gerde, J. Kas, and C. K. Shih, “Quantitative Analysis of the Viscoelastic Properties of Thin Regions of Fibroblasts Using Atomic Force Microscopy”, Biophys. J., 86, 1777, 2004
    [37] Rommel G. Bacabac, Daisuke Mizuno, Christoph F. Schmidt, Fred C. MacKintosh, Jack J.W.A. Van Loon, Jenneke Klein-Nulend, Theo H. Smit, “Round versus flat: Bone cell morphology, elasticity, and mechanosensing”, J. of Biomechs., 41, 1590, 2008
    [38] K. M. Ralls, T. H. Courtney, and J. Wulff, Introduction to Materials Science and Engineering, Wiley, 1976
    [39] F. Jahnig, Biophys. J., 71, 1348, 1996
    [40] K. Tu, D. J. Tobias, J. K. Blasie, and M. L. Klein, Biophys. J., 70, 595, 1996
    [41] Yuhong Zhang, Scott E. Feller, Bernard R. Brooks, and Richard W. Pastor, “Computer simulation of liquid/liquid interfaces. I. Theory and application to octane/water”, J. Chem. Phys., 103, 10252, 1995
    [42] Scott E. Feller, Yuhong Zhang, and Richard W. Pastor, “Computer simulation of liquid/liquid interfaces. II. Surface tension-area dependence of a bilayer and monolayer”, J. Chem. Phys., 103, 10267, 1995
    [43] S. E. Feller, R. M. Venable, and R. W. Pastor, Langmuir 13, 6555, 1997
    [44] Scott E. Feller and Richard W. Pastor, “Constant surface tension simulations of lipid bilayers: The sensitivity of surface areas and compressibilities”, J. Chem. Phys., 111, 1281, 1999
    [45] John F. Nagle, Ruitian Zhang, Stephanie Tristram-Nagle, Wenjun Sun, Horia 1. Petrache, and Robert M. Suter, “X-Ray Structure Determination of Fully Hydrated Lα Phase Dipalmitoylphosphatidylcholine Bilayers”, Biophys. J., 70, 1419, 1996
    [46] J.M. Haile, Molecular dynamics simulation: elementary methods, A Wiley-Interscience publication, New York, 1992
    [47] D.C. Rapaport, The art of molecular dynamics simulation 2nd edition, Cambridge university press, Cambridge, 2004
    [48] John C. Shelley, Mee Y. Shelley, Robert C. Reeder, Sanjoy Bandyopadhyay, and Michael L. Klein, “A Coarse Grain Model for Phospholipid Simulations”, J. Phys. Chem. B, 105, 4464, 2001
    [49] Friederike Schmid, Dominik Düchs, Olaf Lenz, and Beate West, “A generic model for lipid monolayers, bilayers, and membranes”, Computer Physics Communications, 177, 168, 2007
    [50] Sandra V. Bennun, Allison N. Dickey, Chenyue Xing, and Roland Faller, “Simulations of biomembranes and water: Important technical aspects”, Fluid Phase Equilib., 261, 18, 2007
    [51] W. Robinson, S. -B. Zhu, S. Singh, and M. W. Evans, Water in Biology, Chemistry and Physics: Experimental Overviews and Computational Methodologies, World Scientific, Singapore, 1996
    [52] P. de Genes and J. Prost, The Physics of Liquid Crystals, 2nd edition, Oxford University Press, New York, 1993
    [53] J. –P. Douliez, A. Ferrarini, and E. –J. Dufourc, “On the relationship between C-C and C-D order parameters and its use for studying the conformation of lipid acyl chains in biomembranes”, J. Chem. Phys., 109, 2513, 1998
    [54] K. Balali-Mood, T.A. Harroun, and J.P. Bradshaw, “Molecular dynamics simulations of a mixed DOPC/DOPG bilayer”, Eur. Phys. J. E, 12, s01, 2003
    [55] Ulrich Sternberg, Raiker Witter, and Anne S. Ulrich, “All-atom molecular dynamics simulations using orientational constraints from anisotropic NMR samples”, J. Biomol. NMR, 38, 23, 2007
    [56] Louic S. Vermeer, Bert L. de Groot, Valerie Reat, Alain Milon, and Jerzy Czaplicki, “Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments”, Eur. Biophys. J., 36, 919, 2007
    [57] Małgorzata Jemioła-Rzeminska, Marta Pasenkiewicz-Gierula, and Kazimierz Strzałka, “The behaviour of β-carotene in the phosphatidylcholine bilayer as revealed by a molecular simulation study”, Chemistry and Physics of Lipids, 135, 27, 2005

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE