研究生: |
魏家茂 Wei, Chia Mao |
---|---|
論文名稱: |
最佳投資組合之實務效能分析 Empirical Performance Analysis of Optimal Portfolio |
指導教授: |
徐南蓉
Hsu, Nan Jung |
口試委員: |
胡殿中
蔡恆修 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | 最佳投資組合 、平均數-變異數模型 、VAR 模型 |
外文關鍵詞: | optimal portfolio, mean-variance model, VAR model |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在尋找最佳化投資組合時,Markowitz的平均數-變異數模型 (Mean-Variance Model) 是進行資產配置最常用的方法。實務上計算最佳投資組合權重時需要估計未知參數,因此傳統的做法是使用樣本平均數與樣本變異數矩陣進行估計。然而,已經有許多文獻指出估計誤差會導致投資組合的表現比理論預期的結果差,因此,許多論文進一步研究如何透過更好的統計估計減少誤差以提升投資組合的實務績效。本文使用了收縮估計 (shrinkage estimator) 與單因子模型 (single factor model) 估計來改善變異數矩陣估計的準確度,並採用Euclidean norm, Sharpe Ratio與效率前緣 (efficiency frontiers) 等評估準則比較不同估計方法所求出之投資組合的績效差異。若資產報酬率具時間相關性,則使用VAR模型估計所需參數後,再進行投資組合的計算。當樣本夠大時,考慮時間序列修正的投資組合績效會優於修正前之投資組合,此論文透過數值模擬分析,比較在各種不同程度的時間相關情況,不同估計法所得到的投資組合之績效差異,並進行台股資料之實例分析。
Markowitz's celebrated Mean-Variance model is the most popular method used in asset allocation for searching an optimal portfolio. Such an optimization relies on the independent and identically distributed (i.i.d.) assumption for the underlying multiple return series, as well as the known parameter values for the mean and covariance matrix. But, in practice, the mean and covariance matrix are unknown and have to be estimated from historical data. Many studies have found that the optimal portfolio based on the estimated parameters performance not well. The reason is mainly due to the estimation errors. Therefore, using more robust estimations would generally enhance the empirical performance of Markowitz's optimal portfolio. To justify the advantage of using more robust methods in determining the portfolio, this thesis compares different estimation methods in terms of several performance measures, including the efficiency frontier, Sharpe ratio, estimation error for the portfolio weights and Frobenius norm for the covariance matrix. The methods considered include the shrinkage estimates, the estimates using factor models, and the NPEB methods. Besides the i.i.d. modeling, the vector AR modeling is also considered for examining its advantage in asset allocation. Based on the simulation results, we found that shrinkage and factor model methods perform better when short position is allowed but the advantage is insignificant when short position is not allowed.
Bollerslev, T. (1987). A conditionally heteroskedastic time series model for speculative prices and rates of return. The review of economics and statistics 69(3), 542-547
Chevalier, J., Ellison, G. (1999). Are Some Mutual Fund Managers Better Than Others? Cross‐Sectional Patterns in Behavior and Performance. The Journal of Finance 54(3), 875-899
Frankfurter, G.M., Phillips, H.E. and Seagle, J.P. (1976). Performance of the Sharpe portfolio selection model: A comparison. Journal of Financial and Quantitative Analysis 11(2), 195-204.
Hlouskova, J., Schmidheiny, K., Wagner, M. (2009). Multistep predictions for multivariate GARCH models: Closed form solution and the value for portfolio management. Journal of Empirical Finance 16(2), 330-336
Jobson, J.D. and Korkie, B. (1980). Estimation for Markowitz efficient portfolios. Journal of the American Statistical Association 75(371), 544-554.
Kourtis, A., Dotsis, G. and Markellos, R.N. (2012). Parameter Uncertainty in Portfolio Selection: Shrinking the Inverse Covariance Matrix. Journal of Banking and Finance 36(9), 2522-2531.
Lai, T.L., Xing, H. and Chen, Z. (2011). Mean–variance portfolio optimization when means and covariances are unknown. Annals of Applied Statistics 5(2A), 798-823.
Ledoit, O. and Wolf, M. (2003). Improved Estimation of the Covariance Matrix of Stock Returns With an Application to Portfolio Selection. Journal of Empirical Finance 10(5), 603-621.
Michaud, R.O. (1989). Efficient Asset Management. Harvard Business School Press, Boston, MA.
范沛綱 (2006) 最佳投資組合研究-以台灣50指數為例,國立中央大學統計究所碩士論文