研究生: |
楊君韜 Young, Chun-Tao |
---|---|
論文名稱: |
在平均場隨機系統上的多人非合作和合作追蹤賽局策略與它在網路社交系統的應用 Multi–player Noncooperative and Cooperative Tracking Game Strategies for Linear Mean Field Stochastic Systems with Applications to Cyber–Social Systems |
指導教授: |
陳博現
Chen, Bor-Sen |
口試委員: |
林志民
Lin, Chih-Min 韓傳祥 Han, Chuan-Hsiang 邱偉育 Chiu, Wei-Yu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 25 |
中文關鍵詞: | 平均場理論 、賽局理論 、多目標問題 、多目標進化演算法 、平均場隨機帕松跳躍系統 、追蹤控制 |
外文關鍵詞: | mean-field theory, game theory, multiobjective optimization problem (MOP), multiobjective evolutionary algorithm (MOEA), mean–field stochastic jump diffusion (MFSJD) system, tracking control |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中,在一個有著外來干擾的平均場隨機系統上,我們研究一個有著不同目標策略的多個玩家的隨機非合作追蹤賽局和一個有著共同目標策略的多個玩家的隨機合作追蹤賽局。因為在系統動態和成本函數中的平均場行為,針對在平均場隨機帕松跳躍系統上的目標追蹤的非合作和合作賽局策略設計會比在傳統隨機系統上更加困難。以我們使用的間接方法,非合作和合作賽局策略設計問題分別被轉變成線性矩陣不等式所限制的多目標和單一目標問題。線性矩陣不等式所限制的多目標問題可以被納許均衡解來解決,而為了求解,我們使用線性矩陣不等式所限制的多目標進化演算法。兩個模擬範例包括在網絡社交系統上的股市分配和網路安全策略被用來顯示我們實行的演算法和所得到的策略的設計步驟和有效性。
The multi–player stochastic noncooperative tracking game (NTG) with conflicting target strategy and cooperative tracking game (CTG) with common target tracking strategy for the target tracking design problem of mean-field stochastic jump diffusion (MFSJD) system with external disturbance are investigated in this study. Due to the mean (collective) behaviour in the system dynamic and cost functional, the design of the NTG strategy and CTG strategy for target tracking of the MFSJD system are more difficult than the conventional stochastic system. By the proposed indirect method, the NTG and CTG strategy design problem are transformed into linear matrix inequalities (LMIs)–constrained multi-objective problem (MOP) and LMIs constrained single-objective problem (SOP), respectively. The LMIs–constrained MOP could be solved effectively for the Nash equilibrium solution of NTG by the proposed LMIs–constrained multi-objective evolutionary algorithm (MOEA). Two simulation examples including the share market allocation and network security strategies in cyber–social systems are given to illustrate the design procedure and validate the effectiveness of the proposed LMI–constrained MOEA for Nash equilibrium solution of NTG and CTG strategies of MFSJD system.
D. Crisan and J. Xiong, “Approximate McKean–Vlasov Representations For a Class of SPDEs,” Stochastics, vol. 82, no. 1, pp. 53–68, 2009. [2] R. Buckdahn, J. Li, S. Peng, and C. Rainer, “Mean-field stochastic differential equations and associated PDEs,” The Annals of Probability, vol. 45, no. 2, pp. 824–878, 2017. [3] R. Buckdahn, B. Djehiche, J. Li, and S. Peng, “Mean–field backward stochastic differential equations: A limit approach,” The Annals of Probability, vol. 37, no. 4, pp. 1524–1565, 2009. [4] T. D. Frank, A. Daffertshofer, and P. J. Beek, “Multivariate Ornstein-Uhlenbeck processes with mean-field dependent coefficients: Application to postural sway,” Physical Review E, vol. 63, no. 1, pp. 011905-1–011905-16, 2001. [5] C. D. Guilmi, The generation of business fluctuations: financial fragility and mean-field interactions. Frankfurt am Main: Peter Lang, 2008. [6] R. Carmona, F. Delarue, and A. Lachapelle, “Control of Mckean–Vlasov dynamics versus mean field games,” Mathematics and Financial Economics, vol. 7, no. 2, pp. 131–166, 2013. [7] D. Guilmi, Corrado, Mauro, Landini, and Simone, “Financial Fragility, Mean-Field Interaction and Macroeconomic Dynamics: A Stochastic Model,” SSRN, 27-Aug-2008. [Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract id=1258542. [8] R. Carmona, Rene, J.–P. and L.–H Sun, “Mean Field Games and Systemic Risk,” arXiv:1308.2172 [q-fin.PR], SSRN Electronic Journal, vol. 13, 2013, [online] arXiv.org. Available at: https://arxiv.org/abs/1308.2172 [9] S. Konini and E. J. J. V. Rensburg, “Mean field analysis of algorithms for scale-free networks in molecular biology,” Plos One, vol. 12, no. 12, 2017. [10] Cai, S., Liu, Z. and Lee, H, “Mean field theory for biology inspired duplication-divergence network model,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 25, pp. 083106-1–083106-10, 2015. [11] A. Clemence, B. Tahar Imen and M. Anis, “An Extended Mean Field Game for Storage in Smart Grids,” [online] arXiv.org. Available at: https://arxiv.org/abs/1710.08991 [12] R. Couillet, S. M. Perlaza, H. Tembine and M. Debbah, ”A mean field game analysis of electric vehicles in the smart grid,” 2012 Proceedings IEEE INFOCOM Workshops, Orlando, FL, 2012, pp. 79-84. [13] T. Basar and G. J. Olsder, Dynamic noncooperative game theory. London: Academic Press, 1982
25
[14] B.-S. Chen, “Stochastic Noncooperative and Cooperative Evolutionary game strategies of a Population of Biological Networks Under Natural Selection,” Systems Evolutionary Biology, pp. 173–214, 2018. [15] M. Sobel, “Noncooperative stochastic games,” Ann. Math. Stat., vol. 42, no. 6, pp. 1930–1935, Dec. 1971. [16] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and Cooperation in Networked Multi-Agent Systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 2–233, 2007. [17] J. R. Marden, G. Arslan and J. S. Shamma, “Connections between cooperative control and potential games illustrated on the consensus problem,” 2007 European Control Conference (ECC), Kos, 2007, pp. 4604-4611. [18] M. U. B. Niazi, A. B. Ozguler, and A. Yildiz, “Consensus as a Nash Equilibrium of a Dynamic game,” arXiv.org, 05-Jan2017. [Online]. Available: https://arxiv.org/abs/1701.01223. [19] D. Niyato and E. Hossain, “WLC04-5: Bandwidth Allocation in 4G Heterogeneous Wireless Access Networks: A Noncooperative Game Theoretical Approach,” IEEE Globecom 2006, San Francisco, CA, 2006, pp. 1-5. [20] L. Zhang and Y. Li, “A Game-Theoretic Approach to Optimal Scheduling of Parking-Lot Electric Vehicle Charging,” IEEE Transactions on Vehicular Technology, vol. 65, no. 6, pp. 4068–4078, 2016. [21] Krstic, M., Frihauf, P., Krieger, J. and Bas¸ar, T. “Nash Equilibrium Seeking with Finitely-and Infinitely-Many Players.” IFAC Proceedings Volumes, 43(14), pp.1086-1091, 2010. [22] Frihauf, P., Krstic, M. and Basar, T., “Nash Equilibrium Seeking in Noncooperative Games.” IEEE Transactions on Automatic Control, 57(5), pp.1192-1207, 2012. [23] Shamma, J. and Arslan, G, “Dynamic Fictitious Play, Dynamic Gradient Play, and Distributed Convergence to Nash Equilibria.”, IEEE Transactions on Automatic Control, 50(3), pp.312-327, 2005 [24] Ye, M., Hu, g. and Lewis, F., “Nash Equilibrium Seeking for N-Coalition Noncooperative Games”, Automatica, 95, pp.266-272. 2018 [25] B.-S. Chen, W.-Y. Chen, C.-T. Young, and Z. Yan, “Noncooperative Game Strategy in Cyber-Financial Systems With Wiener and Poisson Random Fluctuations: LMIs-Constrained MOEA Approach,” IEEE Transactions on Cybernetics, vol. 48, no. 12, pp. 3323–3336, 2018. [26] C. A. C. Coello, G. B. Lamont, and D. A. V. Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems Second Edition, Boston (MA): Springer, 2007. [27] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A Fast Elitist Non–Dominated Sorting Genetic Algorithm for MultiObjective Optimization: NSGA-II,” Parallel Problem Solving from Nature PPSN VI Lecture Notes in Computer Science, pp. 849–858, 2000. [28] G.P. Liu, J.B. Yang and J.F. Whidborne, Multiobjective Optimizational Control, Hertfordshire, U.K., RSP Ltd, 2002. [29] L. Rachmawati and D. Srinivasan,”Multiobjective Evolutionary Algorithm with Controllable Focus on the Knees of the Pareto Front,” IEEE Trans.Evol. Comput., Vol. 13, no.4, pp.810-824, Aug. 2009. [30] K. Del, Multi-objective Optimization Using Evolutionary Algorithms, 1st ed. Chichester, U.K.; Wiley, 2001. [31] K. Del, A. Pratap, S. Agarwal, and T. Meyarivan, ”A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Trans. Evol. Comput., Vol. 6, no. 2, pp.182-197, Apr. 2002. [32] A. Abraham, L.C. Jain, and R. goldberg, Evolutionary multiobjectiveoptimization: Theoretical Advances and Applications. New York, NY, USA: Springer, 2005. [33] Nash, John. “Non-Cooperative Games.” Annals of Mathematics, vol. 54, no. 2, pp. 286–295, 1951. [34] M. Nourian, P. E. Caines, R. P. Malhame, and M. Huang, “Nash, Social and Centralized Solutions to Consensus Problems via Mean Field Control Theory,” IEEE Transactions on Automatic Control, vol. 58, no. 3, pp. 639–653, 2013. [35] Y. Lin, X. Jiang, and W. Zhang, “An Open-Loop Stackelberg Strategy for the Linear Quadratic Mean-Field Stochastic Differential Game,” IEEE Transactions on Automatic Control, vol. 64, no. 1, pp. 97–110, 2019. [36] M. Jun-Hai and C. Yu-Shu, “Study for the Bifurcation Topological Structure and the Global Complicated Character of a kind of Nnonlinear Finance system(II),” Applied Mathematics and Mechanics, vol. 22, no. 12, pp. 1375–1382, 2001. [37] M. A. Abido, “A Niched Pareto Genetic Algorithm for Multiobjective Environmental/Economic dDispatch,” Fuel and Energy Abstracts, vol. 44, no. 4, p. 261, 2003. [38] Y.-Y. Tan, Y.-C. Jiao, H. Li, and X.-K. Wang, “A Modification to MOEA/D-DE for Multiobjective Optimization Problems with Complicated Pareto Sets,” Information Sciences, vol. 213, pp. 14–38, 2012. [39] B. K. ksendal and A. Sulem, Applied stochastic control of jump diffusions. Springer, 2005. [40] B.-S. Chen, C.-S. Tseng, and H. J. Uang, “Fuzzy Differential Games for Nonlinear Stochastic Systems: Suboptimal Approach,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 2, pp. 222–233, 2002. [41] S. P. Boyd, Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM, 1994. [42] Yuanzhuo Wang, Chuang Lin, Yang Wang and Kun Meng, “Security Analysis of Enterprise Network Based on Stochastic Game Nets Model,” 2009 IEEE International Conference on Communications, Dresden, 2009, pp. 1-5. [43] X. Liang and Y. Xiao, “Game Theory for Network Security,” in IEEE Communications Surveys & Tutorials, vol. 15, no. 1, pp. 472-486, First Quarter 2013. [44] A. T. Siwe and H. Tembine, “Network security as public good: A mean-field-type game theory approach,” 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD), Leipzig, 2016, pp. 601-606. [45] M. K.. open and K. Yoshida, “Substitute Distance Assignments in NSGA-II for Handling Many-Objective Optimization Problems,” Lecture Notes in Computer Science Evolutionary Multi-Criterion Optimization, pp. 727–741, 2007. [46] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA, USA: SIAM, 1994. [47] F. Hanson, Applied Stochastic Process and Control for Jump-Diffusions: Modeling, Analysis and Computation, 2nd ed. Philadelphia, PA, USA: SIAM, 2007. [48] R. Khasminskii and G. N. Milstein, Stochastic Stability of Differential Equations, 2nd ed. Berlin, Germany: Springer-Verlag, 2011. [49] B. S. Chen, C. T. Young, https://www.dropbox.com/l/scl/AADq5dsf98NMSSlGv7t8f5G5w6vLTOFPCUU, 2019