研究生: |
陳郁翔 Chen, Yu-Hsiang |
---|---|
論文名稱: |
氮化鋯硬膜破裂韌性量測 Fracture Toughness Measurement of ZrN Hard Coatings |
指導教授: |
黃嘉宏
Huang, Jia-Hong 喻冀平 Yu, Ge-Ping |
口試委員: |
陳家富
朱瑾 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 114 |
中文關鍵詞: | 氮化鋯 、破裂韌性 、織構 、應力梯度 |
外文關鍵詞: | Zirconium nitride, Fracture toughness, Texture, Stress gradient |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此研究的主要目的是測量氮化鋯硬膜的破裂韌性並探討織構對破裂韌性的影響。遵循Griffith準則與結合力區域模型,裂縫於薄膜內部生成前後,所造成的彈性應力與應變差可用於推導儲存應變能並進而計算出破裂韌性。在本團隊提出的方法中,彈性常數由奈米壓痕機量測、薄膜厚度由掃描式電子顯微鏡量測,而殘餘應力由光學曲率法或cos2αsin2ψ X光繞射方法測量。實驗結果顯示當氮化鋯硬膜的(111)織構為0.71時,其破裂韌性推估在23.9到42.4 J/m2範圍之間。氮化鋯的硬度並沒有隨著膜厚有趨勢性的改變,但應力梯度卻在破裂模型中扮演重要的角色。應力梯度由拉伸與壓縮應力彼此競爭造成,而裂縫可能起始於含大量缺陷和局部最大應力梯度的位置。當膜厚達4.2 µm以上,膜內(200)優選方向的晶粒增加而相對應的減弱(111)方向織構,推測與應力釋放有關。當氮化鋯膜內的儲存能量大於31.6 J/m2,此能量將隨著應力釋放而降低,而此釋放的儲存能可能是織構轉換的驅動力。
The objective of this study was to measure the fracture toughness of ZrN hard coatings and to investigate the effect of texture on the fracture toughness. Following Griffith's criterion and cohesive zone model, the stored elastic strain energy (Gs) inside the film derived from the elastic mismatch strain and the stress difference before and after cracking outset was used to evaluate the fracture toughness of hard coatings. For the proposed energy-based method, elastic constant was measured by nanoindentation, film thickness was determined from SEM cross-sectional image, and residual stress was obtained from the laser curvature method or XRD cos2αsin2ψ method. The results showed that for a ZrN coating with (111) texture coefficient of 0.71, the fracture toughness was estimated to be ranged from 23.9 to 42.4 J/m2. The hardness of the ZrN coatings was not changed with increasing film thickness. Stress gradient may play an important role in the fracture mode. Fracture of the ZrN coating may be initiated at a position of local maximum stress gradient accompanying with defects. The stress gradient in the ZrN coating may be originated from the competitive stress generation mechanisms. As the film thickness was above 4.2 µm, the (200) orientation increased in the strongly (111) textured ZrN coatings, which may be related to the stress relief. When the stored energy in the ZrN coating was higher than 31.6 J/m2, it was partly released accompanying with the stress relief. The release of stored energy was considered to be the driving force of texture inversion.
[1] S. Zhang, D. Sun, Y.Q. Fu, H.J. Du, "Toughness measurement of thin films: a critical review", Surf. Coat. Technol. 198/1-3 (2005) 74.
[2] S. Zhang, D. Sun, Y.Q. Fu, H.J. Du, "Toughness measurement of ceramic thin films by two-step uniaxial tensile method", Thin Solid Films 469 (2004) 233.
[3] S. Massl, W. Thomma, J. Keckes, R. Pippan, "Investigation of fracture properties of magnetron-sputtered TiN films by means of a FIB-based cantilever bending technique", Acta Mater. 57/6 (2009) 1768.
[4] G.H. Wei, B. Bhushan, S.J. Jacobs, "Nanoscale fatigue and fracture toughness measurements of multilayered thin film structures for digital micromirror devices", J. Vac. Sci. Technol. A 22/4 (2004) 1397.
[5] L.E. Toth, "Transition metal carbides and nitrides", Academic Press 7 (1971) 188.
[6] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, J. Aromaa, E. Ristolainen, "Improved corrosion-resistance of physical vapor-deposition coated TiN and ZrN", Surf. Coat. Technol. 41/2 (1990) 191.
[7] L. Vanleaven, M.N. Alias, R. Brown, "Corrosion behavior of ion plated and implanted films", Surf. Coat. Technol. 53/1 (1992) 25.
[8] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schussler, "Decorative hard coatings with improved corrosion resistance", Surf. Coat. Technol. 112/1-3 (1999) 108.
[9] P. Panjan, B. Navinsek, A. Zabkar, V. Marinkovic, D. Mandrino, J. Fiser, "Structural-analysis of ZrN and TiN films prepared by reactive plasma beam deposition", Thin Solid Films 228/1-2 (1993) 233.
[10] C. Sarioglu, "The effect of anisotropy on residual stress values and modification of Serruys approach to residual stress calculations for coatings such as TiN, ZrN and HfN", Surf. Coat. Technol. 201/3-4 (2006) 707.
[11] S. Horita, M. Kobayashi, H. Akahori, T. Hata, "Material properties of ZrN film on Silicon prepared by low-energy ion-assisted deposition", Surf. Coat. Technol. 66/1-3 (1994) 318.
[12] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schüssler, "Decorative hard coatings with improved corrosion resistance", Surf. Coat. Technol. 112 (1999) 108.
[13] P.C. Johnson, H. Randhawa, "Zirconium nitride films prepared by cathodic arc plasma deposition process", Surf. Coat. Technol. 33/1-4 (1987) 53.
[14] E. Kelesoglu, C. Mitterer, M.K. Kazmanli, M. Urgen, "Microstructure and properties of nitride and diboride hard coatings deposited under intense mild-energy ion bombardment", Surf. Coat. Technol. 116 (1999) 133.
[15] N. Alexandre, M. Desmaisonbrut, F. Valin, M. Boncoeur, "Mechanical properties of hot isostatically pressed zirconium nitride materials", J. Mater. Sci. 28/9 (1993) 2385.
[16] S.X. Gong, S.A. Meguid, "On the effect of the release of residual stresses due to near-tip microcracking", Int. J. Fract. 52/4 (1991) 257.
[17] Y. Xia, S. Zhou, F.M. Zhang, N. Gu, "Effect of ZrN coating by magnetron sputtering and sol-gel processed silica coating on titanium/porcelain interface bond strength", J. Mater. Sci.-Mater. Med. 22/2 (2011) 317.
[18] C.S. Chen, C.P. Liu, H.G. Yang, C.Y.A. Tsao, "Influence of substrate bias on practical adhesion, toughness, and roughness of reactive dc-sputtered zirconium nitride films", J. Vac. Sci. Technol. A 22/5 (2004) 2041.
[19] W.J. Chou, G.P. Yu, J.H. Huang, "Bias effect of ion-plated zirconium nitride film on Si(100)", Thin Solid Films 405/1-2 (2002) 162.
[20] Z. Wokulski, "Mechanical properties of TiN whiskers", Phys. Status Solidi A-Appl. Res. 120/1 (1990) 175.
[21] J.E. Sundgren, "Structure and properties of TiN coatings", Thin Solid Films 21 (1985) 128/1.
[22] W.J. Chou, G.P. Yu, J.H. Huang, "Deposition of TiN thin films on Si(100) by HCD ion plating", Surf. Coat. Technol. 140/3 (2001) 206.
[23] A.J. Perry, J. Schoenes, "Variations in the colour of group IV B nitride films", Vacuum 36/1-3 (1986) 149.
[24] J. Pelleg, L.Z. Zevin, S. Lungo, N. Croitoru, "Reactive-sputter-deposited TiN films on glass substrates ", Thin Solid Films 197/1-2 (1991) 117.
[25] J.P. Zhao, X. Wang, Z.Y. Chen, S.Q. Yang, T.S. Shi, X.H. Liu, "Overall energy model for preferred growth of TiN films during filtered arc deposition", J. Phys. D-Appl. Phys. 30/1 (1997) 5.
[26] U.C. Oh, J.H. Je, "Effects of strain-energy on the preferred orientation of TiN thin-films", J. Appl. Phys. 74/3 (1993) 1692.
[27] I. Iordanova, P.J. Kelly, R. Mirchev, V. Antonovc, "Crystallography of magnetron sputtered TiN coatings on steel substrates", Vacuum 81/7 (2007) 830.
[28] N. Schell, J. Bottiger, W. Matz, J. Chevallier, "Growth mode and texture development in TiN films during magnetron sputtering - An in situ synchrotron radiation study", Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 199 (2003) 133.
[29] G. Abadias, Y.Y. Tse, P. Guerin, V. Pelosin, "Interdependence between stress, preferred orientation, and surface morphology of nanocrystalline TiN thin films deposited by dual ion beam sputtering", J. Appl. Phys. 99/11 (2006) 113519.
[30] J.H. Je, D.Y. Noh, H.K. Kim, K.S. Liang, "Preferred orientation of TiN films studied by a real time synchrotron x-ray scattering", J. Appl. Phys. 81/9 (1997) 6126.
[31] D. Gall, S. Kodambaka, M.A. Wall, I. Petrov, J.E. Greene, "Pathways of atomistic processes on TiN(001) and (111) surfaces during film growth: an ab initio study", J. Appl. Phys. 93/11 (2003) 9086.
[32] I. Petrov, A. Myers, J.E. Greene, J.R. Abelson, "Mass and energy-resolved detection of ions and neutral sputtered species incident at the substrate during reactive magnetron sputtering of Ti in mixed Ar+N2 mixtures", J. Vac. Sci. Technol. A-Vac. Surf. Films 12/5 (1994) 2846.
[33] C.S. Shin, S. Rudenja, D. Gall, N. Hellgren, T.Y. Lee, I. Petrov, J.E. Greene, "Growth, surface morphology, and electrical resistivity of fully strained substoichiometric epitaxial TiNx (0.67 <= x < 1.0) layers on MgO(001)", J. Appl. Phys. 95/1 (2004) 356.
[34] JCPDS pdf #350753
[35] J.E. Hove, W.C. Riley, "Modern Ceramic: Some Principles and Concepts", John Wiley & Sons Ltd. (1965) 352.
[36] J.H. Huang, K.W. Lau, G.P. Yu, "Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering", Surf. Coat. Technol. 191/1 (2005) 17.
[37] J.H. Huang, C.Y. Hsu, S.S. Chen, G.P. Yu, "Effect of substrate bias on the structure and properties of ion-plated ZrN on Si and stainless steel substrates", Mater. Chem. Phys. 77/1 (2003) 14.
[38] E. Torok, A.J. Perry, L. Chollet, W.D. Sproul, "Young modulus of TiN, TiC, ZrN and HfN", Thin Solid Films 153 (1987) 37.
[39] A.J. Perry, V. Valvoda, D. Rafaja, "X-ray residual-stress measurement in TiN, ZrN and HfN filmsusing the Seemann-Bohlin method", Thin Solid Films 214/2 (1992) 169.
[40] A.J. Perry, "A contribution to the study of Poisson ratios and elastic-constants of TiN, ZrN and HfN", Thin Solid Films 193/1-2 (1990) 463.
[41] P. Jin, S. Maruno, "Evaluation of Internal Stress in Reactively Sputter-Deposited ZrN Thin Films", Jpn. J. Appl. Phys. 30 (1991) 1463.
[42] H. Okamoto, "N-Zr (nitrogen-zirconium)", J. Phase Equilib. Diffus. 27/5 (2006) 551.
[43] R.A. Robert E. Reed-Hill, Lara Abbaschian, "Physical Metallurgy Principles", Cengage Learning (2008).
[44] ASTM E-399, "Standard Test for Plane Strain Fracture Toughness of Metallic Materials", American Society for Testing and Materials (1987) 412.
[45] S. Zhang, D. Sun, Y.Q. Fu, H.J. Du, "Toughening of hard nanostructural thin films: a critical review", Surf. Coat. Technol. 198/1-3 (2005) 2.
[46] S. Zhang, X.M. Zhang, "Toughness evaluation of hard coatings and thin films", Thin Solid Films 520/7 (2012) 2375.
[47] A.A. Voevodin, J.S. Zabinski, "Supertough wear-resistant coatings with 'chameleon' surface adaptation", Thin Solid Films 370/1-2 (2000) 223.
[48] E. Harry, A. Rouzaud, P. Juliet, Y. Pauleau, M. Ignat, "Failure and adhesion characterization of tungsten-carbon single layers, multilayered and graded coatings", Surf. Coat. Technol. 116 (1999) 172.
[49] A.A. Voevodin, J.S. Zabinski, "Load-adaptive crystalline-amorphous nanocomposites", J. Mater. Sci. 33/2 (1998) 319.
[50] K. Holmberg, A. Laukkanen, H. Ronkainen, K. Wallin, S. Varjus, "A model for stresses, crack generation and fracture toughness calculation in scratched TiN-coated steel surfaces", Wear 254/3-4 (2003) 278.
[51] J.W. Hoehn, S.K. Venkataraman, H. Huang, W.W. Gerberich, "Micromechanical toughness test applied to NiAl", Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 192 (1995) 301.
[52] G. Jaeger, I. Endler, M. Heilmaier, K. Bartsch, A. Leonhardt, "A new method of determining strength and fracture toughness of thin hard coatings", Thin Solid Films 377 (2000) 382.
[53] G. Gille, K. Wetzig, "Investigations on mechanical-behavior of brittle wear-resistant coatings 1. Experimental results", Thin Solid Films 110/1 (1983) 37.
[54] G. Gille, "Investigations on mechanical-behavior of brittle wear-resistant coatings 2. Theory", Thin Solid Films 111/3 (1984) 201.
[55] Z. Chen, B. Cotterell, W. Wang, "The fracture of brittle thin films on compliant substrates in flexible displays", Eng. Fract. Mech. 69/5 (2002) 597.
[56] B. Cotterell, Z. Chen, "Buckling and cracking of thin films on compliant substrates under compression", Int. J. Fract. 104/2 (2000) 169.
[57] Y.V. Milman, B.A. Galanov, S.I. Chugunova, "Plasticity characteristic obtained through hardness measurement", Acta Metall. Mater. 41/9 (1993) 2523.
[58] T.Y. Tsui, Y.C. Joo, "A new technique to measure through film thickness fracture toughness", Thin Solid Films 401/1-2 (2001) 203.
[59] B.R. Lawn, A.G. Evans, D.B. Marshall, "Elastic-plastic indentation damage in ceramics - The median-radial crack system", J. Am. Ceram. Soc. 63/9-10 (1980) 574.
[60] D.S. Harding, W.C. Oliver, G.M. Pharr, "Cracking during nanoindentation and its use in the measurement of fracture toughness", Thin Films: Stresses and Mechanical Properties V 356 (1995) 663.
[61] X.D. Li, D.F. Diao, B. Bhushan, "Fracture mechanisms of thin amorphous carbon films in nanoindentation", Acta Mater. 45/11 (1997) 4453.
[62] X.D. Li, B. Bhushan, "Measurement of fracture toughness of ultra-thin amorphous carbon films", Thin Solid Films 315/1-2 (1998) 214.
[63] X.M. Zhang, S. Zhang, "Rethinking the role that the "step" in the load-displacement curves can play in measurement of fracture toughness for hard coatings", Thin Solid Films 520/9 (2012) 3423.
[64] C.M. She, Y.W. Zhang, K.Y. Zeng, "A three-dimensional finite element analysis of interface delamination in a ductile film/hard substrate system induced by wedge indentation", Eng. Fract. Mech. 76/14 (2009) 2272.
[65] M.D. Drory, R.H. Dauskardt, A. Kant, R.O. Ritchie, "Fracture of synthetic diamond", J. Appl. Phys. 78/5 (1995) 3083.
[66] J.C. Caicedo, C. Amaya, L. Yate, O. Nos, M.E. Gomez, P. Prieto, "Hard coating performance enhancement by using Ti/Tin (n), Zr/ZrN (n) and TiN/ZrN (n) multilayer system", Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 171/1-3 (2010) 56.
[67] Q. Yang, D.Y. Seo, L.R. Zhao, "Multilayered coatings with alternate pure Ti and TiN/CrN superlattice", Surf. Coat. Technol. 177 (2004) 204.
[68] S. Ulrich, C. Ziebert, M. Stuber, E. Nold, H. Holleck, M. Goken, E. Schweitzer, P. Schlossmacher, "Correlation between constitution, properties and machining performance of TiN/ZrN multilayers", Surf. Coat. Technol. 188 (2004) 331.
[69] M. Nordin, R. Sundstrom, T.I. Selinder, S. Hogmark, "Wear and failure mechanisms of multilayered PVD TiN/TaN coated tools when milling austenitic stainless steel", Surf. Coat. Technol. 133 (2000) 240.
[70] Y. Zhu, H.D. Espinosa, "An electromechanical material testing system for in situ electron microscopy and applications", Proc. Natl. Acad. Sci. U. S. A. 102/41 (2005) 14503.
[71] M.P. Manoharan, A.V. Desai, M.A. Haque, "Fracture toughness characterization of advanced coatings", J. Micromech. Microeng. 19/11 (2009).
[72] L.X. Cheng, Z.P. Xie, G.W. Liu, W. Liu, W.J. Xue, "Densification and mechanical properties of TiC by SPS-effects of holding time, sintering temperature and pressure condition", J. Eur. Ceram. Soc. 32/12 (2012) 3399.
[73] S. Gavarini, R. Bes, N. Millard-Pinard, S. Cardinal, C. Peaucelle, A. Perrat-Mabilon, V. Garnier, C. Gaillard, "A comparative study of TiN and TiC: Oxidation resistance and retention of xenon at high temperature and under degraded vacuum", J. Appl. Phys. 109/1 (2011).
[74] Y.G. Liu, J.Q. Zhou, L. Wang, S. Zhang, Y. Wang, "Grain size dependent fracture toughness of nanocrystalline materials", Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 528/13-14 (2011) 4615.
[75] J.J. Chen, S.J. Bull, "Modelling the limits of coating toughness in brittle coated systems", Thin Solid Films 517/9 (2009) 2945.
[76] A.W. Ruff, S.M. Wiederhorn, "Erosion by Solid Particle Impact", Materials Science and Technology 16 (1979) 69.
[77] N. Cherault, G. Carlotti, N. Casanova, P. Gergaud, C. Goldberg, O. Thomas, M. Verdier, "Mechanical characterization of low-k and barrier dielectric thin films", Microelectron. Eng. 82/3-4 (2005) 368.
[78] G. Carlotti, N. Cherault, N. Casanova, C. Goldberg, G. Socino, "Elastic constants of low-k and barrier dielectric films measured by Brillouin light scattering", Thin Solid Films 493/1-2 (2005) 175.
[79] J.P. Ye, N. Kojima, S. Shimizu, J.M. Burkstrand, "High-temperature nanoindentation measurement for hardness and modulus evaluation of low-k films", Materials, Technology and Reliability of Advanced Interconnects-2005 863 (2005) 23.
[80] C.M. Stafford, C. Harrison, K.L. Beers, A. Karim, E.J. Amis, M.R. Vanlandingham, H.C. Kim, W. Volksen, R.D. Miller, E.E. Simonyi, "A buckling-based metrology for measuring the elastic moduli of polymeric thin films", Nat. Mater. 3/8 (2004) 545.
[81] G. Carlotti, P. Colpani, D. Piccolo, S. Santucci, V. Senez, G. Socino, L. Verdini, "Measurement of the elastic and viscoelastic properties of dielectric films used in microelectronics", Thin Solid Films 414/1 (2002) 99.
[82] L. Shen, K.Y. Zeng, Y.H. Wang, B. Narayanan, R. Kumar, "Determination of the hardness and elastic modulus of low-k thin films and their barrier layer for microelectronic applications", Microelectron. Eng. 70/1 (2003) 115.
[83] K. Omote, Y. Ito, "Thermal expansion of low dielectric constant thin films by high-resolution x-ray reflectivity", Thin Films Stresses and Mechanical Properties XI 875 (2005) 223.
[84] J.B. Vella, Q. Xie, N.V. Edwards, J. Kulik, K.H. Junker, "Mechanical properties and porosity of organo-silicate glass (OSG) low-k dielectric films", Thin Films: Stresses and Mechanical Properties Ix 695 (2002) 309.
[85] A.A. Volinsky, J.B. Vella, W.W. Gerberich, "Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation", Thin Solid Films 429/1-2 (2003) 201.
[86] M. Bielawski, K.Y. Chen, "Computational Evaluation of Adhesion and Mechanical Properties of Nanolayered Erosion-Resistant Coatings for Gas Turbines", J. Eng. Gas. Turbines Power-Trans. ASME 133/4 (2011) 042102.
[87] J.O. Kim, J.D. Achenbach, P.B. Mirkarimi, M. Shinn, S.A. Barnett, "Elastic-constants of single-crystal transition-metal notride films measured by line-focus acoustic microscopy", J. Appl. Phys. 72/5 (1992) 1805.
[88] S.W. King, G.A. Antonelli, "Simple bond energy approach for non-destructive measurements of the fracture toughness of brittle materials", Thin Solid Films 515/18 (2007) 7232.
[89] A.A. Griffith, "The Phenomena of Rupture and Flow in Solids", Philosophical Transactions of the Royal Society of London. Series A, Containing Papersof a Mathematical or Physical Character 221 (1921) 163.
[90] R.G. Parr, W. Yang, "Density-functional theory of atoms and molecules", Oxford University Press, New York, USA (1989).
[91] K.Y. Chen, L.R. Zhao, J. Rodgers, J.S. Tse, "Alloying effects on elastic properties of TiN-based nitrides", J. Phys. D-Appl. Phys. 36/21 (2003) 2725.
[92] K.Y. Chen, L.R. Zhao, J.S. Tse, "Ab initio study of elastic properties of Ir and Ir3X compounds", J. Appl. Phys. 93/5 (2003) 2414.
[93] K.Y. Chen, M. Bielawski, "Interfacial fracture toughness of transition metal nitrides", Surf. Coat. Technol. 203/5-7 (2008) 598.
[94] J.C. Boettger, "Nonconvergence of surface energies obtained from thin-film calculations", Phys. Rev. B 49/23 (1994) 16798.
[95] D.R. Lide, "CRC Handbook of Chemistry and Physics", CRC Press, New York, USA (2005) 9-59.
[96] L.B. Freund, S. Suresh, "Thin film materials : stress, defect formation, and surface evolution", Cambridge University Press, Cambridge, England (2003) 246.
[97] M. Ohring, "The Materials Science of Thin Films", Academic Press, San Diego, USA (1992) 568.
[98] D. Broek, "Elementary engineering fracture mechanics", Dordrecht ; Boston : M. Nijhoff ; Hingham, Mass., U.S.A. : Distributors for the U.S. and Canada, Kluwer Academic (1986).
[99] J.H. Huang, H.C. Yang, X.J. Guo, G.P. Yu, "Effect of film thickness on the structure and properties of nanocrystalline ZrN thin films produced by ion plating", Surf. Coat. Technol. 195/2-3 (2005) 204.
[100] J.H. Huang, C.H. Ho, G.P. Yu, "Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si(100) and stainless steel substrates", Mater. Chem. Phys. 102/1 (2007) 31.
[101] G.E. Dieter, "Mechanical Metallurgy ", MacGraw Hill, New York, USA (1986) 98.
[102] R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials", J. Wiley & Sons Ltd. (1996) 315.
[103] D. Briggs, M.P. Seah, "Practical Surface Analysis: Auger and X-ray Photoelectron Spectroscopy", John Wiley & Sons Ltd. 1 (1990) 17.
[104] S.C. Wang, J.H. Huang, G.P. Yu, Master thesis, "Post-annealing Induced Phase Transformation and Phase Separation of Zr(O,N) Thin Films", National Tsing-Hua University, Hsinchu, Taiwan (2008).
[105] P. Scherrer, Gött. Nachr., 2 (1918) 98.
[106] JCPDS pdf #899069
[107] L.V. Azaroff, M.J. Buerger, "The powder method in X-ray crystallography", McGraw-Hill New York, USA (1958) 233.
[108] W.C. Oliver, G.M. Pharr, "An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments", J. Mater. Res. 7/6 (1992) 1564.
[109] G.G. Stoney, "The tension of metallic films deposited by electrolysis", Proc. R. soc. Lond. Ser. A-Contain. Pap. Math. Phys. Character 82/553 (1909) 172.
[110] "Physical properties of Silicon (Si)", Ioffe Institute Database (2011).
[111] C.H. Ma, J.H. Huang, H. Chen, "Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction", Thin Solid Films 418/2 (2002) 73.
[112] B.B. He, "Two-dimensional x-ray diffraction", John Wiley & Sons Ltd., New Jersey, USA (2009) 312.
[113] C.L.A. Ricardo, M. D'Incau, P. Scardi, "Revision and extension of the standard laboratory technique for X-ray diffraction measurement of residual stress gradients", J. Appl. Crystallogr. 40 (2007) 675.
[114] J. Koo, J. Valgur, "Layer growing/removing method for the determination of residual stresses in thin inhomogeneous discs", Ecrs 5: Proceedings of the Fifth European Conference on Residual Stresses 347-3 (2000) 89.
[115] I. Kraus, G. Gosmanova, "On X-ray measurements of residual-stresses in materials with lattice strain gradient", Czech. J. Phys. 39/7 (1989) 751.
[116] V. Hauk, B. Kruger, "A new approach to evaluate steep stress gradients principally using layer removal", Ecrs 5: Proceedings of the Fifth European Conference on Residual Stresses 347-3 (2000) 80.
[117] H.K. Tonshoff, J. Ploger, H. Seegers, "Determination of residual stress gradients in brittle materials using an improved spline algorithm", Ecrs 5: Proceedings of the Fifth European Conference on Residual Stresses 347-3 (2000) 83.
[118] A.J. Perry, J.A. Sue, P.J. Martin, "Practical measurement of the residual stress in coatings", Surf. Coat. Technol. 81/1 (1996) 17.
[119] A.N. Wang, G.P. Yu, J.H. Huang, Master Thesis, "Fracture Toughness Measurement on TiN Hard Coating", National Tsing-Hua University, Hsinchu, Taiwan (2012).
[120] W.R. Chen, G.P. Yu, J.H. Huang, Master Thesis, "The mechanical properties of Ti-Si-N nanocomposite films deposited by magnetron sputtering", National Tsing-Hua University, Hsinchu, Taiwan (2009).
[121] National Institute of Standards and Technology, "http://www.nist.gov/index.html".
[122] D. Broek, "Elementary engineering fracture mechanics", Boston Hingham, Mass., Martinus Nijhoff; Distributed by Kluwer Boston (1982).
[123] H. Oettel, R. Wiedemann, S. Preissler, "Residual-stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation", Surf. Coat. Technol. 74-5/1-3 (1995) 273.
[124] L.G. Van Uitert, H.M. O'Bryan, M.E. Lines, H.J. Guggenheim, G. Zydzik, "Thermal expansion - An empirical correlation", Materials Research Bulletin 12/3 (1977) 261.
[125] S.M. Sze, K.K. Ng, "Physics of Semiconductor Devices", John Wiley & Sons Ltd., New Jersey, USA (2006).
[126] W.H. Tuan, J.C. Kuo, "Contribution of residual stress to the strength of abrasive ground alumina", J. Eur. Ceram. Soc. 19/8 (1999) 1593.
[127] J.D. Eshelby, F.C. Frank, F.R.N. Nabarro, "The equilibrium of linear arrays of dislocations", Philosophical Magazine 42/327 (1951) 351.
[128] I.A. Ovid'ko, "Materials science - Deformation of nanostructures", Science 295/5564 (2002) 2386.
[129] M.F. Ashby, R.A. Verrall, "Diffusion-accommodated flow and superplasticity", Acta Metallurgica 21/2 (1973) 149.
[130] L.E. Koutsokeras, G. Abadias, "Intrinsic stress in ZrN thin films: Evaluation of grain boundary contribution from in situ wafer curvature and ex situ x-ray diffraction techniques", J. Appl. Phys. 111/9 (2012) 093509.
[131] G. Abadias, P. Guerin, "In situ stress evolution during magnetron sputtering of transition metal nitride thin films", Appl. Phys. Lett. 93/11 (2008) 111908.
[132] R. Daniel, K.J. Martinschitz, J. Keckes, C. Mitterer, "The origin of stresses in magnetron-sputtered thin films with zone T structures", Acta Mater. 58/7 (2010) 2621.
[133] A.L. Shull, F. Spaepen, "Measurements of stress during vapor deposition of copper and silver thin films and multilayers", J. Appl. Phys. 80/11 (1996) 6243.
[134] S.S. Zhao, Y. Yang, J.B. Li, J. Gong, C. Sun, "Effect of deposition processes on residual stress profiles along the thickness in (Ti,Al)N films", Surf. Coat. Technol. 202/21 (2008) 5185.
[135] J.D. Kamminga, T.H. de Keijser, R. Delhez, E.J. Mittemeijer, "On the origin of stress in magnetron sputtered TiN layers", J. Appl. Phys. 88/11 (2000) 6332.
[136] J.W. Hutchinson, M.Y. He, A.G. Evans, "The influence of imperfections on the nucleation and propagation of buckling driven delaminations", J. Mech. Phys. Solids 48/4 (2000) 709.
[137] G.I. Barenblatt, "Equilibrium cracks formed on a brittle fracture", Doklady Akademii Nauk SSSR 127 (1959) 47.
[138] I. Milosev, H.H. Strehblow, M. Gaberscek, B. Navinsek, "Electrochemical oxidation of ZrN hard (PVD) coatings studied by XPS", Surf. Interface Anal. 24/7 (1996) 448.
[139] M. Del Re, R. Gouttebaron, J.P. Dauchot, P. Leclere, G. Terwagne, M. Hecq, "Study of ZrN layers deposited by reactive magnetron sputtering", Surf. Coat. Technol. 174 (2003) 240.
[140] J.W. John, F. Watts, "An introduction to surface analysis by XPS and AES", John Wiley & Sons Ltd., New Jersey, USA (2003) 65.