研究生: |
吳孟宗 |
---|---|
論文名稱: |
不同碳載體製備直接甲醇燃料電池陽極觸媒之特性分析 Characterization of the Anode Catalyst of a Direct Methanol Fuel Cell Prepared with Different Carbon Supports |
指導教授: |
蔡春鴻 博士
Dr. Chuen-Horng Tsai 葉宗洸 博士 Dr.Tsung-Kuang Yeh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 直接甲醇燃料電池 、陽極觸媒 、電化學分析 、奈米結構碳載體 |
外文關鍵詞: | DMFC, anode catalyst, electrochemical analysis, nanostructure carbon supports |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
成但是Pt%降低。CV結果得到VH11有最佳催化活性和抗毒化能力,VOH21、MH21都較VH21有較佳的催化活性和抗毒化能力,MOH21有更佳的催化效率,但是甲醇氧化電流較低,由Vulcan承戴的觸媒經空氣處理後的觸媒都有氧化電流變大,但是毒化情形變嚴重的現象,CMK-1承戴的觸媒空氣處理後則有較低的氧化峰電位但是氧化電流也變很小,EIS結果顯示CMK-1承載的觸媒空氣處理後,反應阻抗有變大的趨勢,Vulcan承載的觸媒空氣處理後電子交換阻抗變小。
VH11因合金化比例最佳,活性和抗毒化能力是不同比例中最好的,高比表面積的CMK-1提供較好的觸媒分散度和抗毒化能力,經含氧官能基處理後能改善原本觸媒分散度提高催化活性,空氣熱處理會使觸媒顆粒變大,影響CMK-1和Vulcan承載的觸媒電化學趨勢不同。
1. Jarvi TD, Stuve EM. In: Lipkowski J, Ross PN, editors. Electrocatalysis. New York: Wiley/VCH; 1988. p. 75.
2. Zakhidov AA, Baughman R, Iqbal Z, Cui C, Khayrullin I, Dantas SO et al. Science 1998;282:897-901
3. R. Ryoo, S.H. Joo, and S. Jun, J. Phys. Chem. B 1999;103:7743-6
4. T. Kyotani, L. Tsai, A. Tomita, Chem. Mater 1996;8(8):2109-13
5. R. Ryoo, S. Jun, j. M. Kim and M. J. Kim, Chem. Commun. (1997) 2225-6
6. A. Koshio, M. Yudasaka, S. Iijima. Chem. Phys. Letters 356(2002) 595-600
7. M. WATANABE, M. UCHIDA and S. MOTOO, J. Electroanal Chem. 229 (1987) 395
8. W.R. Grove, Phil.Mag.14, 127-130(1839).
9. W. Vielstich, Fuel Cells, Wiely/Interscience , London 1965 , 501 pp.
10. 鄭耀宗、徐耀昇,“燃料電池技術進的現況分析”,八十八年節約能源論文發表會論 專輯,(1999) PP.409-422
11. Kai Sundmacher , Keith Scott, Chemical Engineering Science 54 (1999 ) 2927-2936.
12. Jerry C.Huang (ALynn),Micro-Fuel Cell Workshop, 2001。
13. R. Parsons, T. Vandernoot, J. Electroanal. Chem. 257 (1988) 9.
14. A. Hamnett, Catalysis Today 38 (1997) 445-457.
15. S. Wasmus, A. Kuver, Journal of Electroanalytical Chemistry 461 (1999) 14-31
16. T. Iwasita, F.C. Nart, J. Electroanal. chem. 317 (1991) 291
17. S. Wilhelm, T. Iwsita, W. Vielstich, J. Electroanal. Chem. 238 (1987) 383.
18. A. Papoutsis, J.M. Léger, C. Lamy, J. Electroanal. Chem. 359 (1993) 141.
19. B. Beden, C. Lamy, A. Bewick, K.Kunimatsu, J. Electroanal. Chem. 1981, 121, 343
20. M. Watanabe, S. Motoo, J. Electroanal. Chem. 1975, 60,275
21. P. M. Urban,A. Funke, J. T. Müller, M. Himmen, A. Doctor, Appl. Catal. A: General 221 (2001) 459-470.
22. T. Iwasita, F.C. Nart, W. Ber. Bunsen-Ges. Vielstichd, Phys. Chem. 1990, 94,1030
23. H. A. Gasteiger, N. Markovic, P. N. Ross, E. J. Cairns, J. Phys. Chem. 1994, 98, 617
24. Peter M. Unett Funke, Jens T. Muller, Michael Himmen, Andreas Doctor, Applied Catalysis A: General 221 (2001) 459-470.
25. H. P. Dhar, L. G. Christner, A. K. Kush, J. Electrochem. Soc. 134 (1987) 3021.
26. K. L. Ley et al., J. Electrochem. Soc. 144, 1543(1997)
27. M. Götz and H.Wendt, Electrochim. Acta, 43, 3637 (1998)
28. K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee, Y. E. Sung, J. Phys. Chem. B 2002, 106, 1869-77
29. C. Roth, M. Göetz, H. Fuess, J. Appl. Electochem. 31(2001) 793-8
30. B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, E. Reddington, A. Sapienza, B. C. Chan, T. E. Mallouk, and S. Sarangapani, J. Phys. Chem. B. 102. 9997(1998)
31. T. Frelink, W. Visscher, van Veen, J. A. R. Surf. Sci. 1995, 335,353
32. T. Frelink, W. Visscher, van Veen, J.A. R. Electrochim. Acta 1994, 94, 1030
33. S. Mukerjee, S. Srinivasan, M. P. Soriaga and J. Mcbreen, J. Mater. Sci. 38(2003)2995-3005
34. M. Uchida, Y. Aoyama, M. Tanabe, N. Yanagihara, N. Eda and A. Ohta, J. Electrochem. Soc. 142(1995)2572
35. S. H. J.., S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasakl and R. Ryoo, Letters to nature, 412(2001)168-70
36. S. Iijima, Nature 354, 56 (1991)
37. S. Iijima, et al., Chem. Phys. Lett. 309 (1999) 165.
38. (a) Hyeon, T.; Han, S.; Sung, Y.-E.; Park, K.-W.; Kim, Y.-W Angew. Chem. Int. Ed. 2003, 42, 4352. (b) Han, S.; Yun, Y.; Park, K.-W.;. Sung, Y.-E.; Hyeon, T. AdV. Mater. 2003, 15, 1922.
39. T. Yoshitake, Y. Shimakawa, S. Kuroshima, H. Kimura, T. Ichihashi, Y. Kubo, D. Kasuya, K. Takahashi, F. Kokai, M. Yudasaka, S. Iijima, Physica B 323 (2003) 124-126.
40. S. Han, Y. Yun, and T. Hyeon, J. Phys. Chem. B 2004, 108, 939-944
41. E. Antolini, F. Cardellini, Journal of alloys and Compounds 315 (2001) 118-122.
42. A. Hamnett, B.J. Kennedy, and F. E. WAGNER, J. cata. 124,30-40 (1990)
43. B. D. McNicol et al. J. Electroanal. Chem. 81(1977) 249-260
44. B. E. Warren, “X-ray Diffraction.” Addison-Wesley, Reading, MA, 1969.
45. V. Radmilovi, H. A. Gasteiger, P. N. Ross, J. Cata. 154, 98-106(1995)
46. J. M. Thomas, W. J. Thomas (1997) Principles and practice of heterogeneous catalysis. P.325 VCH, Weinheim
47. Lange’s Handbook of Chemistry, 13th ed.; Dean, J. A. Ed., McGraw-Hill; New York, 1985; pp 3-124-3-125
48. H. A. Gasteiger, P. N. Ross, Jr., E.J. Cairns, Surf. Sci. 293 (1993) 67
49. Y. Takasu, T. Kawaguchi, W. Sugimoto, Y. Murakami, J. Electrochim. Acta 48 (2003) 3861-3868
50. G. C. Torres, E. I. Iablonski, G. T. Baronetti, A. A. Castro, S. R. de Miguel, O. A. Scelza, M. D. Blanco, M. A. Pena fghfg and J. L. G. Rierro, J. Mater. Sci. 161 (1997) 213
51. I. Iwasita, W. Vielstich, J. Electronanal. Chem. 250 (1988) 452