研究生: |
楊政毅 Yang, Cheng-Yi |
---|---|
論文名稱: |
利用平行板電容儀器偵測纖維滲透率 Estimation of fiber permeability via parallel-plate capacitance equipment |
指導教授: |
姚遠
Yao, Yuan |
口試委員: |
鄭西顯
王智偉 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 40 |
中文關鍵詞: | 樹脂轉注成型 、達西定律 、滲透率 、平行板電容器 |
外文關鍵詞: | resin transfer molding, Darcy’s law, permeability, parallel-plane capacitor |
相關次數: | 點閱:73 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
樹脂轉注成型(Resin Transfer Molding, RTM)是一種常用來製造高分子複合材料(polymer composites)的技術,在RTM製程中,纖維預織物的滲透率與孔隙率的比值是影響流動的關鍵因素,其隨著纖維預織物的不均勻編織或是不整齊的堆疊而有差異,此參數也決定了樹脂流動的特性,繼而影響最終產品的品質。量測滲透率的方法已經發展成許多不同的量測系統,其中較大部分採用高速攝影機記錄流體流動的波前,然而文獻所提出方法,需能辨識流體與纖維預織物的顏色差異,當纖維預織物放置於一個非透明的模具抑或是流體的顏色跟纖維預織物相仿,此方法便難以辨別,為了克此方法所遇到的問題,本研究採用了平行板電容器的方法偵測流體波前,藉由在RTM製程中所使用的模具外加裝銅條,偵測其模具內灌注的電容變化從而根據推測波前,由於本研究的電容條不須直接碰到需要量測的纖維,所以可以使用於碳纖維等導電纖維,其原理是透過系統中的混合介電常數(dielectric constant)隨樹脂灌入而變動,導致電容值不斷增加,再根據電容定義可推得一移階函數(shifting-order),合併達西定律,聯立求解後能獲得電容與時間的關係式,根據此關係式從而推得纖維滲透率。
Resin transfer molding (RTM) is a widely adopted technique to produce polymer composites. In RTM, Darcy’s law is commonly used to describe the flow pattern during the resin infusion, where the permeability of fiber reinforcement is a crucial parameter greatly influencing the flow and eventually influencing the final product quality. In the existing literature, various methods have been proposed for estimating the permeability of fiber sheets. In these methods, flow fronts are usually recorded by visual systems, e.g. cameras. Therefore, transparent molds and dyed resins are often required, which are impractical in industrial applications. In this study, a permeability measurement system is proposed, which applies a parallel-plane capacitor for flow front detection. The capacitance changes as long as the resin flow front moves forward. By placing copper strips outside the mold, the measurement system does not affect the flow pattern inside the mold. In addition, owing to this feature, this system cannot only be applied to glass fibers but also on carbon fibers which are conductive.
[1] S. G. Advani and K.-T. Hsiao, Manufacturing techniques for polymer matrix composites (PMCs). Elsevier, 2012.
[2] S. G. Advani and E. M. Sozer, Process modeling in composites manufacturing. CRC press, 2002.
[3] A. P. Mouritz, E. Gellert, P. Burchill, and K. Challis, "Review of advanced composite structures for naval ships and submarines," Composite Structures, vol. 53, no. 1, pp. 21-41, 2001.
[5] J. Li, X. Fu, C. Zhang, R. Liang, and B. Wang, "Optimal injection design for resin transfer molding with in situ permeability measurement and process simulation," Journal of Composite Materials, vol. 43, no. 16, pp. 1695-1712, 2009.
[6] D. R. Nielsen and R. Pitchumani, "Control of flow in resin transfer molding with real-time preform permeability estimation," Polymer Composites, vol. 23, no. 6, pp. 1087-1110, 2002.
[7] C. Hopmann, M. L. Fecher, A. Boettcher, K. Fischer, and L. Winkelmann, "Development of a novel and adaptable injection unit for an automated and quality controlled manufacturing of RTM parts for aerospace applications," in Proceedings of Pps-32: The 32nd International Conference of the Polymer Processing Society, vol. 1914, A. Maazouz, Ed. (AIP Conference Proceedings, Melville: Amer Inst Physics, 2017.
[8] F. Trochu, R. Gauvin, and D. M. Gao, "NumericalL-Analysis of the resin transfer molding process by the finite-element method," Advances in Polymer Technology, vol. 12, no. 4, pp. 329-342, 1993.
[9] F. Trochu, E. Ruiz, V. Achim, and S. Soukane, "Advanced numerical simulation of liquid composite molding for process analysis and optimization," Composites Part a-Applied Science and Manufacturing, vol. 37, no. 6, pp. 890-902, 2006.
[10] Y. S. Song, D. Heider, and J. R. Youn, "Statistical Characteristics of Out-of-Plane Permeability for Plain-Woven Structure," Polymer Composites, vol. 30, no. 10, pp. 1465-1472, 2009.
[11] R. Arbter, J.M. Beraudb, C. Binetruyc, L. Bizetd, J. Bréardd, S. Comas-Cardonac, C. Demariae, A. Endruweitf,⇑,P. Ermannia, F. Gommerg, S. Hasanovich, P. Henratb, F. Klunkeri, B. Lainej, S. Lavanchyk, S.V. Lomovg,A. Longf, V. Michaudk, G. Morrenl, E. Ruize, H. Soll, F. Trochue, B. Verleyeg, M. Wietgrefeh,W.Wui,G. Ziegmann "Experimental determination of the permeability of textiles: A benchmark exercise," Composites Part a-Applied Science and Manufacturing, vol. 42, no. 9, pp. 1157-1168, 2011.
[12] T. J. Wang, C. H. Wu, and L. J. Lee, "Inplane permeability measurement and analysis in liquid composites molding," Polymer Composites, vol. 15, no. 4, pp. 278-288, 1994.
[13] Y. J. Lee, J. H. Wu, Y. Hsu, and C. H. Chung, "A prediction method on in-plane permeability of mat/roving fibers laminates in vacuum assisted resin transfer molding," Polymer Composites, vol. 27, no. 6, pp. 665-670, 2006.
[14] P. Simacek and S. G. Advani, ""Equivalent" permeability and flow in compliant porous media," Composites Part a-Applied Science and Manufacturing, vol. 80, pp. 107-110, 2016.
[15] J. J. Liu, Y. Sano, and A. Nakayama, "A simple mathematical model for determining the equivalent permeability of fractured porous media," International Communications in Heat and Mass Transfer, vol. 36, no. 3, pp. 220-224, 2009.
[16] H. Tan and K. M. Pillai, "A Method to Estimate the Accuracy of Radial Flow-Based Permeability Measuring Devices," Journal of Composite Materials, vol. 43, no. 21, pp. 2307-2332, 2009.
[17] G. Francucci, E. S. Rodriguez, and A. Vazquez, "Study of saturated and unsaturated permeability in natural fiber fabrics," Composites Part a-Applied Science and Manufacturing, vol. 41, no. 1, pp. 16-21, 2010.
[18] R. Matsuzaki, S. Kobayashi, A. Todoroki, and Y. Mizutani, "Full-field monitoring of resin flow using an area-sensor array in a VaRTM process," Composites Part a-Applied Science and Manufacturing, vol. 42, no. 5, pp. 550-559, 2011.
[19] R. Matsuzaki, S. Kobayashi, A. Todoroki, and Y. Mizutani, "Control of resin flow/temperature using multifunctional interdigital electrode array film during a VaRTM process," Composites Part a-Applied Science and Manufacturing, vol. 42, no. 7, pp. 782-793, 2011.
[20] R. Matsuzaki, S. Kobayashi, A. Todoroki, and Y. Mizutani, "Flow control by progressive forecasting using numerical simulation during vacuum-assisted resin transfer molding," Composites Part a-Applied Science and Manufacturing, vol. 45, pp. 79-87, 2013.
[21] B. Yenilmez and E. M. Sozer, "A grid of dielectric sensors to monitor mold filling and resin cure in resin transfer molding," Composites Part a-Applied Science and Manufacturing, vol. 40, no. 4, pp. 476-489, 2009.
[22] K. Tifkitsis and A. Skordos, "A novel dielectric sensor for process monitoring of carbon fibre composites manufacturing," in 11th International Conference on Manufacturing of Advanced Composites Nottingham, United Kingdom, 2018.
[23] T. H Chiu, "Estimation of Permeability and Porosity in Resin Transfer Molding," 2017.
[24] 陳凱琳.(2005). VARTM應用於複合夾芯材料之技術與數值模流分析.國立台灣大學工程科學及海洋工程學系學位論文, 23-25.
[25] A. V. Goncharenko, V. Z. Lozovski, and E. F. Venger, "Lichtenecker's equation: applicability and limitations," Optics Communications, vol. 174, no. 1-4, pp. 19-32, 2000.
[26] K. Hoesa, D. Dinescua, H. Sola, M. Vanheulea,R. S. Parnasb, Y. Luoc, I. Verpoest, "New set-up for measurement of permeability properties of fibrous reinforcements for RTM," Composites Part a-Applied Science and Manufacturing, vol. 33, no. 7, pp. 959-969, 2002, Art. no. Pii s1359-835x(02)00035-0.
[27] D. L. Woerdeman, F. R. Phelan, and R. S. Parnas, "Interpretation of 3-D permeability measurements for RTM modeling," Polymer Composites, vol. 16, no. 6, pp. 470-480, 1995.
[28] 李佳賓.(2018). 透過多方向流動波前數據量測纖維滲透率及分析芯材滲透狀況. 國立清華大學化學工程學系學位論文, 1-95.
[29] 魏百鍵.(2014). 基於局部滲透係數線上估計之樹脂轉注成型監控與流動控制. 國立清華大學化學工程學系學位論文, 1-67.