簡易檢索 / 詳目顯示

研究生: 李羿翰
Lee, I Han
論文名稱: 應用單鬆弛時間熱晶格波茲曼法及圖形顯示卡叢集計算有熱傳的壓力驅動渠道流
Simulations of thermal turbulent channel flow with single-relaxation-time thermal lattice Boltzmann method on multi-GPU cluster
指導教授: 林昭安
Lin, Chao An
口試委員: 牛仰堯
黃俊誠
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 64
中文關鍵詞: 晶格波茲曼法圖形顯示卡渠道流紊流
外文關鍵詞: lattice Boltzmann method, graphic processor unit, channel flow, turbulent flow
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文應用單鬆弛時間熱晶格波茲曼法計算有傳的壓力驅動渠道紊流。 為了加速模擬,使用訊息傳遞介面對三維流場進行二切割及圖形顯示卡叢集做平行處理,因此模擬 所需 時間可 大幅 縮短。為了確認程式的正性,透過層 流的模擬 並將結果與解析作比較。 紊流方面則是針對𝑅𝑒𝜏=150且𝑃𝑟=0.71做研究,流場方面使用的模型為D3Q19,溫度場則是使用D3Q7。模擬中使用了大渦數值模擬,使用的型為Smagorinsky的subgrid-scale模型。 本論文中 針對了兩種不同的設定做研究,一為有加入大渦數值模擬另則無。模擬結果將與benchmark作比較,兩種設定 得到的結果皆與之相近。在紊流構探討中,透過對壓力及Q-criterion作可視化,成功的捕捉到hairpin structure。本論文最後利用多張圖形顯示卡對程式平行效率作測試。


    In this thesis, the turbulent channel flow with heat transfer is simulated with single-relaxation-time thermal lattice Boltzmann method. To speed up the simulation, the computation is conducted on multi-GPU cluster with two-dimensional decomposition by message passing interface(MPI). For validation, the laminar flow is simulated and compared with analytical solution. For turbulent flow simulations, the friction Reynolds number is set to be 𝑅𝑒𝜏=150 and the Prandtl number is 𝑃𝑟=0.71. Two cases, with LES and without LES, are simulated. Both results are compared with benchmark solutions and are in good agreement. The hairpin structure can be observed in the isosurface of Q-criterion and pressure. The temperature fluctuations is also visualized. In addition, the parallel performance is tested by the strong scaling test on different GPU cluster.

    1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Theory of Lattice Boltzmann methods . . . . . . . . . . . . . 4 1.2.2 Thermal lattice Boltzmann models . . . . . . . . . . . . . . . 5 1.2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Thermal boundary conditions . . . . . . . . . . . . . . . . . . 7 1.2.5 Turbulent Poiseuille ow with heat transfer . . . . . . . . . . 8 1.2.6 GPU implementation . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Methodology 11 2.1 The Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 The BGK approximation . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 The low-Mach-number approximation . . . . . . . . . . . . . . . . . . 15 2.4 Discretization of the Boltzmann equation . . . . . . . . . . . . . . . . 15 2.4.1 Discretization of time . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.2 Discretization of phase space . . . . . . . . . . . . . . . . . . . 17 2.4.3 Thermal lattice Boltzmann method . . . . . . . . . . . . . . . 19 2.5 The Chapman-Enskog expansion . . . . . . . . . . . . . . . . . . . . 20 2.6 Large eddy simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.6.1 The filtering operation . . . . . . . . . . . . . . . . . . . . . . 21 2.6.2 The lattice Boltzmann Subgrid-scale model . . . . . . . . . . . 21 3 Numerical algorithm 24 3.1 Simulation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.1 Velocity boundary condition . . . . . . . . . . . . . . . . . . . 25 3.2.2 Thermal boundary condition . . . . . . . . . . . . . . . . . . . 26 3.3 The external force and the Buoyancy force . . . . . . . . . . . . . . . 27 3.4 GPU implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.5 Two dimensional domain decomposition . . . . . . . . . . . . . . . . 29 3.6 Memory allocation improvement . . . . . . . . . . . . . . . . . . . . . 30 4 Numerical results and discussion 35 4.1 Laminar Poiseuille channel flow with heat transfer . . . . . . . . . . . 36 4.2 Turbulent Poiseuille channel flow with heat transfer . . . . . . . . . . 37 4.3 Turbulent structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.4 Parallel performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5 Conclusions 53

    [1]Y. Zhu and R. A. Antonia, “Temperature dissipation measurements in a fully developed turbulent channel flow,” Exp. Fluids 15, 191-199, (1993).
    [2]N. Kasagi, Y. Tomita and A. Kuroda, “Direct numerical simulation of passive scalar field in a turbulent channel flow,” J. Heat Transfer 114, 598-606, (1992).
    [3]H. Kawamura, H. Abe and H. Shingai, “DNS of turbulence and heat transport in channel flow with respect to Reynolds and Prandtl number effects,” Int. J. Fluid Flow 20, 196-207, (1999).
    [4]U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice-gas automata for the Navier- Stokes equation”, Physics Review Letters 56, 1505, (1986).
    [5]S. Wolfram, “Cellular automaton fluids 1: Basic theory”, Journal Statistic Physics 45, 471, (1986).
    [6]S. Succi, E. Foti and F. J. HIGUERA, “Three-Dimensional Flows in Complex Geometries with the Lattice Boltzmann Method”, Europhysics Letters 9, 345, (1989).
    [7]F. J. Higuera, and J. Jem´enez, “Boltzmann approach to lattice gas simulations”, Europhysics Letters 9, 663, (1989).
    [8]P. L. Bhatnagar, E. P. Gross, and M. Grook, “A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems”, Physics Reviews E 94, 511, (1954).
    [9]S. Harris, “An introduction to the throry of the Boltzmann equation”, Holt, Rinehart and Winston, New York, (1971)
    [10]S. Chen, H. Chen, D. O. Martinez, and W. H. Matthaeus, “Lattice Boltzmann model for simulation of magnetohydrodynamics,” Physics Review Letters 67, 3776, (1991).
    [11]Y. H. Qian, D. d’Humi`eres, and P. Lallemand, “ Lattice BGK model for Navier- Stokes equation,” Europhysics Letters 17, 479, (1992).
    [12]S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flow,” Annual Reviews of Fluid Mechanics 30, 329, (1998).
    [13]Y. H. Qian, D. d’Humi´eres, and P. Lallemand, “Lattice BGK models for Navier- Stokes equation”, Europhysics Letters 17, 479, (1992).
    [14]H. Chen, S. Chen, and W. H. Matthaeus, “Recovery of the Navier-Stokes quations using a lattice gas Boltzmann method”, Physics Reviews A 45, R5339, (1992).
    [15]A. Dieter, Wolf-Gladrow, “Lattice gas cellular automata and lattice Boltzmann models”, Springer: Berlin, (2000).
    [16]P. Lallemand, and L. S. Luo, “Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability,” Phys. Rev. E 61, 6546, (2000).
    [17]J. Latt and B. Chopard,“Lattice Boltzmann method with regularized pre- collision distribution functions“, Mathematics and Computers in Simulation 72, 165, (2006)
    [18]S. Ansumali,and I. V. Karlin, “Entropy function approach to Lattice Boltzmann Method“, Journal of Statical Physicas 107, Nos.1/2, (2002).
    [19]L. S. Lin, H. W. Chang, C. A. Lin, Multi relaxation time lattice Boltzmann simulations of transition in deep 2D lid driven cavity using GPU, Computers and Fluids 80, 381, (2013).
    [20]C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, Multi-GPU implementation of a hybrid thermal lattice Boltzmann solver using the TheLMA framework, Comput. Fluids 80, 269, (2013).
    [21]C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, Multi-GPU implementation of the lattice Boltzmann method, Comput. Math. Appl 65, 252, (2013).
    [22]X. Wang, T. Aoki, Multi-GPU performance of incompressible flow computation by lattice Boltzmann method on GPU cluster, Parallel. Computing 37, 521, (2011).
    [23]C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, Scalable lattice Boltzmann solvers for CUDA GPU clusters, Comput. Fluids 39, 259, (2013).
    [24]F. Kuznik, C. Obrecht, G. Rusaouen, J. J. Roux, LBM based flow simulation using GPU computing processor, Computers and Mathematics with Applications 59, 2380, (2010).
    [25]C. Obrecht, F. Kuznik, B. Tourancheau, J. J. Roux, A new approach to the lattice Boltzmann method for graphics processing units, Computers and Mathematics with Applications 61, 3628, (2011).
    [26]G. R. McNamara, and G. Zanetti, “Use of the Boltzmann equation to simulate lattice-gas automata,” Phys. Rev. Lett. 61, 2332, (1988).
    [27]F. J. Higuera, and J. Jim´enez, “Boltzmann approach to lattice gas simulations,” Europhys. Lett. 9, 663, (1989).
    [28]S. Chen, H. Chen, D. O. Martinez, and W. H. Matthaeus, “Lattice Boltzmann model for simulation of magnethydrodynamics,” Phys. Rev. Lett. 67, 3776, (1991).
    [29]H. Chen, S. Chen, and W. H. Matthaeus, “Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method,” Phys. Rev. A. 45, 5339, (1992).
    [30]Y. H. Qian, D. d’Humi`eres, and P. Lallemand, “Lattice BGK models for Navier- Stokes equation,” Europhys. Lett. 17, 479, (1992).
    [31]X. He, and L. S. Luo, “Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation,” Phys. Rev. E 56, 6811, (1997).
    [32]X. He, and L. S. Luo, “A priori derivation of the lattice Boltzmann equation,” Phys. Rev. E 55, 6333, (1997).

    [33]K. Kono, T. Ishizuka, H. Tsuda, and A. Kurosawa, “Application of lattice Boltzmann model to multiphase flows with phase transition,” Comput. Phys. Commun. 129, 110, (2000).
    [34]S. Hou, X. Shan, Q. Zou, G. D. Doolen, and W. E. Soll, “Evaluation of two lattice Boltzmann models for multiphase flows,” J. Comput. Phys. 138, 695, (1997).
    [35]X. He, S. Chen, and R. Zhang, “A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh- Taylor instability,” J. Comput. Phys. 152, 642, (1999).
    [36]C. H. Shih, C. L. Wu, L. C. Chang, and C. A. Lin, “Lattice Boltzmann simulations of incompressible liguid-gas system on partial wetting surface,” Phil. Trans. R. Soc. A 369, 2510, (2011).
    [37]M. Krafczyk, M. Schulz, and E. Rank, “Lattice-gas simulations of two-phase flow in porous media,” Commun. Numer. Meth. Engng 14, 709, (1998).
    [38]J. Bernsdorf, G. Brenner, and F. Durst, “Numerical analysis of the pressure drop in porous media flow with lattice Boltzmann (BGK) automata,” Comput. Phys. Commun. 129, 247, (2000).
    [39]D. M. Freed, “Lattice-Boltzmann method for macroscopic porous media modeling,” Int. J. Mod. Phys. C 9, 1491, (1998).
    [40]Y. Hashimoto, and H. Ohashi, “Droplet dynamics using the lattice-gas method,” Int. J. Mod. Phys. 8, 977, (1997).
    [41]H. Xi, and C. Duncan, “Lattice Boltzmann simulations of three-dimensional single droplet deformation and breakup under simple shear flow,” Phys. Rev. E 59, 3022, (1999).
    [42]S. Hou, “Lattice Boltzmann Method for Incompressible, Viscous Flow“, Ph.D. Thesis, Department of Mechanical Engineering, Kansas State University, (1995).
    [43]D. d’Humi`eres, “Generalized lattice Boltzmann equation“, In Rarefied Gas Dynamics: Theory and Simulations, Progress in Astronautics and Aeronautics, 159, Shizgal BD, Weaver DP (eds).AIAA: Washington, DC, 45, (1992).
    [44]R. A. Brownlee, A.N Gorban, J.Levesley,”Stabilisation of the lattice- Boltzmann method using the Ehrenfests’ coarse-graining”, (2008)
    [45]M. Spasov, D. Rempfer, and P. Mokhasi,“Simulation of a turbulent channel flow with entropic Lattice Boltzmann method“, International Journal For Numerical Methods In Fluids60, 1241, (2008)
    [46]F. Tosi, S. Ubertini, S. Succi, and I. V. Karlin,“Optimization strategies for the Entropic lattice Boltzmann method“, Journal of Scientific Computing 30, No. 3, (2006)
    [47]D. d’Humi`eres, “Generalized lattice Boltzmann equation,” In Rarefied gas dymanics - Theory and simulations, Progress in Astronautics and Aeronautics, vol. 159, Shizgal BD, Weaver DP(eds). AIAA: Washington, DC, 45-458, (1992).
    [48]G. McNamara, A. L. Garcia, and B. J. Alder, “Stabilization of thermal lattice Boltzmann models,” Journal Statics Physics 81, 395, (1995).
    [49]G. McNamara and B. Alder, “Analysis of the lattice Boltzmann treatment of hydrodynamics,” Physica A 194, 218, (1993)
    [50]X. Shan, “Simulation of Rayleigh-Benard convection using a lattice Boltzmann method,” Physical Review E 55 , 2780, (1997).
    [51]X. He, S. Chen, and D. Doolen, “A novel thermal model for the lattice Boltzmann method in incompressible limit,” Journal of Comput. Phys. 146, 282-300, (1998).
    [52]Y. Peng, C. Shu and Y. T. Chew, “Simplified thermal model for the lattice Boltzmann model for incompressible thermal flows,” Physics Reviews E 68, 026701, (2003).
    [53]Q. Li, Y. L. He, Y. Wang and G. H. Tang, “An improved thermal lattice Boltzmann model for flows without viscous heat dissipation and compression work,” Journal of Modern Physics C Vol. 19, No. 1 (2008) ,125-150.
    [54]Y. Shi, T. S. Zhao and Z. L. Guo, “Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation in the incompressible limit,” Physics Review E70, 066310, (2004).
    [55]Z. W. Tian, C. Zuo, H. J. Liu, Z. H. Liu, Z. L. Guo and C. G. Zheng, ”Thermal lattice Boltzmann model with viscous heat dissipation in the incompressible limit,” Journal of Modern Physics C Vol. 17, No. 8 (2006) ,1131-1139.
    [56]A. J. C. Ladd, “Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech, 271, 285, (1994).
    [57]A. J. C. Ladd, “Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results, J. Fluid Mech, 271, 311, (1994).
    [58]I. Ginzbourg and P. M. Adler, “Boundary condition analysis for the three- dimensional lattice Boltzmann model“, J. Phys. II France 4, 191-214, (1994)
    [59]P. A. Skordos, “Initial and boundary conditions for the lattice Boltzmann method,” Phys. Rev. E 48, 4823, (1993).
    [60]D. R. Noble, S. Chen, J. G. Georgiadis and R. O. Buckius, “A consistent hydrodynamic boundary condition for the lattice Boltzmann method,” Phys. Fluid 7, 2928, (1995).
    [61]T. Inamuro, M. Yoshino, and F. Ogino, “A non-slip boundary condition for lattice Boltzmann simulations,” Phys. Fluids 7, 2928, (1995).
    [62]S. Chen, D. Martinez, and R. Mei, “On boundary conditions in lattice Boltzmann methods,” Phys. Fluids 8, 2527, (1996).
    [63]Q. Zou, and X. He, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model,” Phys. Fluids 9, 1591, (1997).
    [64]C. F. Ho, C. Chang, K. H. Lin, and C. A. Lin, “Consistent boundary conditions for 2D and 3D lattice Boltzmann simulations,” CMES 44, 137, (2009).
    [65]G. H. Tang, W. Q. Tao and Y. L. He,“Thermal boundary condition for thermal lattice Boltzmann equation,” Physics Review E 72, 016703, (2005).
    [66]A. D’Orazio, S. Succi and C. Arrighettic, “Lattice Boltzmann simulation of open flows with heat transfer,” Physics Fluids 15, 2778, (2003).
    [67]Z. Guo, B. Shi and C. Zheng, “A coupled lattice BGK model for the Boussinesq equations,” Int. J. Numer. Methods Fluids 39, 325, (2002)
    [68]C. H. Liu, K. H. Lin, H. C. Mai and C. A. Lin, “Thermal boundary conditions for thermal lattice Boltzmann simulations,” Computers and Mathematics with applications, (2009).
    [69]J. Kim and P. Moin, “Transport of passive scalars in a turbulent channel flow,” In Andre, J. -C, Turbulent Shear Flows 6, Springer, Berlin, 85-96, (1989).
    [70]N. Kasagi and Y. Ohtsubo, “Direct numerical simulaiton of low Prandtl number thermal field in a turbulent channel flow,” In Durst, F. et al., Turbulent Shear Flows 8, Springer, Berlin, 97-119, (1993).
    [71]H. Kawamura, H. Abe and K. Shingai, “DNS of turbulence and heat transport in a channel flow with different Reynolds and Prandtl numbers and boundary conditions,” 3rd Int. Symp. on Turbulence, Heat and Mass Transfer, 15-32, (2000).
    [72]H. Wu, J. Wang and Z. Tao, “Passive heat transfer in a turbulent channel flow simulation using large eddy simualtion based on the lattice Boltzmann method framework,”
    [73]J. Bolz, I. Farmer, E. Grinspun, and P. Schro¨der, “Sparse matrix solvers on the GPU: Conjugate gradients and multigrid,” ACM Trans. Graph. (SIGGRAPH) 22, 917, (2003).
    [74]F. A. Kuo, M. R. Smith, C. W. Hsieh, C. Y. Chou, and J. S. Wu, “GPU acceleration for general conservation equations and its application to several engineering problems,” Comput. Fluids 45, 147, (2011).
    [75]J. T¨olke, “Implementation of a lattice Boltzmann kernel using the compute unified device architecture developed by nVIDIA,” Comput. Visual Sci. 13, 29, (2008).
    [76]J. T¨olke, and M. Krafczyk, “TeraFLOP computing on a desktop PC with GPUs for 3D CFD,” Int. J. Comput. Fluid D. 22, 443, (2008).
    [77]E. Riegel, T. Indinger, and N. A. Adams, “Implementation of a Lattice- Boltzmann method for numerical fluid mechanics using the nVIDIA CUDA technology,” CSRD 23, 241, (2009).
    [78]C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, “A new approach to the lattice Boltzmann method for graphics processing units,” Comput. Math. Appl. 61, 3628, (2011).
    [79]C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, “Scalable lattice Boltzmann solvers for CUDA GPU clusters,” Comput. Fluids. 39, 259, (2013).
    [80]H. W. Chang, P.Y. Hong, L.S. Lin and C.A. Lin, “Simulations of three- dimensional cavity flows with multi relaxation time lattice Boltzmann method and graphic processing units,” Procedia Engineering. 61, 94, (2013)
    [81]P. Y. Hong“Lattice Boltzmann model with multi-GPU implementation,” Master’s thesis, National Tsing Hua University, (2013)
    [82]L. M. Huang“Implementation of lattice Boltzmann method on multi-GPU cluster using two-dimensional decomposition,” Master’s thesis, National Tsing Hua University, (2014)
    [83]Y. H. Lee,“Turbulent duct flow simulations with single-relaxation tim and entropic lattice boltzmann method on multi-GPU cluster,” Master’s thesis, National Tsing Hua University, (2015).
    [84]T. I. Gombosi, “Gas kinetic theory,” Cambridge University Press, (1994).

    [85]J. W. Deardorff, “A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers.“, Journal of Fluid Mechanics 41.2, 453, (1970).
    [86]S. Hou, J. Sterling, S. Chen and G. D. Doolen, “A lattice Boltzmann subgrid model for high Reynolds number flows.”, Pattern formation and lattice gas automata, vol.6, 151, (1996).
    [87]H. Yu, L. S. Luo, and S. S. Girimaji, “LES of turbulent square jet flow using an MRT lattice Boltzmann model,” Comput. Fluids 35, 957, (2006).
    [88]M. J. Pattison, K. N. Premnath and S.Banerjee, “Computation of turbulent flow and secondary motions in a square duct using a forced generalized lattice Boltzmann equation.“, Physical of Review , Vol. 79, 026704, (2009).
    [89]H. W. Hsu. “Investigation of turbulent Couette-Poiseuille and Couette flows inside a square duct“, Ph.D. Thesis, Department of Mechanical Engineering, National Tsing Hua University, (2012).
    [90]L. S. Luo, “Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases.”, Physical Review E 62.4, 4982, (2000).
    [91]R. Cornubert, D. d’Humi`eres, and D Levermore, “A Knudsen layer theory for lattice gases,” Physica D 47, 241, (1991)
    [92]I. C. Kim “Second Order Bounce Back Boundary Condition for the Latice Boltzmann Fluid Simulation,” KSME 14, 84, (2000)
    [93]S. Gokaltun and G. S. Dulikravich , “Simulation of channel flows using thermal lattice Boltzamnn method”, Compt. Math. Application 24, (2008).
    [94]B. Debusschere and C. J. Rutland, “Turbulent scalar transport mechanisms in plane channel and Couette flows”, Int. J. Heat and Mass Transfer 47, 1771- 1781, (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE