研究生: |
鄭景文 Jheng, Jing Wen |
---|---|
論文名稱: |
利用快速熱熔磊晶法製備銻化鎵結構於矽基板 Fabrication of GaSb structures on Silicon Substrate by Rapid-Melting-Growth |
指導教授: |
李明昌
Lee, Ming Chang |
口試委員: |
謝光前
Hsieh, Kuang-Chien 鄭克勇 Cheng, Keh-Yung |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 銻化鎵 、三五族 、矽積體光學 |
外文關鍵詞: | Gallium Antimonide, III-V material, Silicon Photonics |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文致力研究III-V族半導體利用快速熱熔磊晶法(RMG)整合於矽基板上,因為銻化鎵熔點在712 ℃,所以可以利用RMG的方式製備。由於是雙原子化合物,且富有極性以及反相位(antiphase domain),所以本文將深入探討III-V整合在矽基板上的異質整合,如銻化鎵與矽的晶格不匹配達13%,銻化鎵的熱膨脹係數又高達矽的3倍,且銻化鎵須遵守規律的排列ABABA,倘若不規律排列則會形成antiphase domain。
然而一般的三五族蒸鍍方法不是利用分子束磊晶(MBE)就是用有機金屬化學氣相沉積法(MOCVD)製備,但本實驗將用電子束及熱蒸鍍一起共蒸鍍銻鎵薄膜,利用鍍率去控制膜厚、濃度以及粗糙度,雖然製備出來的品質不如MBE以及MOCVD,但仍可藉由RMG的方式做修復。
接著根據濃度差異、結構變化對磊晶的成果以及RMG參數等等,進行實驗優化,三者皆環繞在晶相及磊晶的方法上,主要判別晶相以及發光效率,運用光致發光系統(PL)、穿透式顯微鏡、EDS、SAD等等量測工具。
In this thesis, structures made of III-V semiconductor Gallium Antimonide (GaSb) on silicon substrate by Rapid-Melt-Growth (RMG) method are investigated. Due to the relatively low melting point of GaSb (712 ℃) and small bandgap, it is an ideal material to be applied for Si photonics as a light source and can be fabricated through the RMG process. However, III-V compounds are different from group IV, hence there are still many issues required to be overcome, such as such as lattice mismatch (13%), thermal expansion mismatch between GaSb and Si.
In general, growing III-V semiconductor typically relies on either Molecular Beam Epitaxy (MBE) or Metal-organic Chemical Vapor Deposition (MOCVD), which requires expensive tools and critical processes, especially for heterogeneous epitaxial growth of III-V on Si. In this study, Ga (7N) and Sb (6N) are co-evaporated by the E-gun and thermal evaporator to be the precursor for the following annealing process. Despite the quality of the precursor film can’t compare with the material directly made by MBE or MOCVD, this study is to demonstrate a monocrystalline, high-quality GaSb structure implemented via the RMG method.
To get the best material quality, we study several key process conditions of RMG, including the ratio of Ga and Sb in precursor, crucible material, annealing temperature and annealing time. Then the material is characterized by Photoluminescence (PL), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Selective Area Diffraction pattern (SAD) and so on. Finally, we find the best process condition to make GaSb on Si substrate.
[1] 陳學仕, "量子點簡介," 化工資訊 ChemNet 奈米專欄, vol. 工研院化工所, 2002.
[2] Shih-Yen Lin and W.-H. Lin, "Type-II gallium antimonide quantum dots and rings for optical devices," SPIE, 2012.
[3] Y. Liu, M. D. Deal, and J. D. Plummer, "High-quality single-crystal Ge on insulator by liquid-phase epitaxy on Si substrates," Applied Physics Letters, vol. 84, pp. 2563-2565, 2004.
[4] S. Chen, "Design and process for three-dimensional heterogeneous integration," J. L. Plummer, P. B. Griffin, and Y. Nishi, Eds., ed, 2010, pp. 57-61.
[5] Davies R H, Dinsdale A T, Gisby J A, Robinson J A J, Martin S M, and CALPHAD, "MTDATA - Thermodynamics and Phase Equilibrium Software from the National Physical Laboratory," UK, pp. 229-271, 2002.
[6] J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournié, "Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si," Applied Physics Letters, vol. 99, p. 121113, 2011.
[7] S. Hosseini Vajargah, S. Y. Woo, S. Ghanad-Tavakoli, R. N. Kleiman, J. S. Preston, and G. A. Botton, "Atomic-resolution study of polarity reversal in GaSb grown on Si by scanning transmission electron microscopy," Journal of Applied Physics, vol. 112, p. 093101, 2012.
[8] Y. R. Chen, L. C. Chou, Y. J. Yang, and H. H. Lin, "Twinning in GaAsSb grown on (1 1 1)B GaAs by molecular beam epitaxy," Journal of Physics D: Applied Physics, vol. 46, p. 035306, 2013.
[9] Shu-Lu Chen, Peter B. Griffin, and J. D. Plummer, "Single-Crystal GaAs and GaSb on Insulator on Bulk Si Substrates Based on Rapid Melt Growth," IEEE, vol. 31, pp. 597-599, 2010.
[10] H. W. A, "Electronic Structure and Properties of Solids," (Freeman), 1980.
[11] M. Levinshtein, S. Rumyantsev, and M. Shur, "Handbook Series on Semiconductor Parameters," (World Scientific), vol. 1, pp. 125-146, 1996.
[12] R. C. S. T.L Ngai and Y. A. Chang, "The Ga-Sb (Gallium-Antimony) System," Bulletin of Alloy Phase Diagrams, vol. 9, pp. 586-591, 1988.
[13] Goldschmidt and V. M., "Alloy Physics," (Wiley), 1926.
[14] H. Arend and J. Hulliger, "Crystal Growth in Science Technology," (Plenum), vol. 210, p. 193, 1987.
[15] Bahri M., Largeau L., Mauguin O., Patriarche G., Madiomanana K., Rodriguez J. B., et al., "Structural characterization of GaSb-based heterostructures grown on Si," ANR, 2012.
[16] S. M. Sze, "Physics of Semiconductor Devices," Wiley, 1981.
[17] S. Wolf and R. Tauber, "Silicon Processing for the VLSI Era," Lattice Press, 1986.
[18] Ze Yuan, Archana Kumar, Chien-Yu Chen, Aneesh Nainani, Peter Griffin, Albert Wang, et al., "Optimal Device Architecture and Hetero-Integration Scheme for III-V CMOS," VLSI, pp. T54-T55, 2013.
[19] K. Akahane, N. Yamamoto, S.-i. Gozu, and N. Ohtani, "Heteroepitaxial growth of GaSb on Si(001) substrates," Journal of Crystal Growth, vol. 264, pp. 21-25, 2004.
[20] Jun Tatebayashi, Anitha Jallipalli, Maya Narayanan Kutty, Shenghong Huang, Kalyan Nunna, Ganesh Balakrishnan, et al., "Monolithically Integrated III-Sb-Based Laser Diodes Grown on Miscut Si Substrates," IEEE, vol. 15, pp. 716-723, 2009.
[21] Y. Nakamura, T. Sugimoto, and M. Ichikawa, "Formation and optical properties of GaSb quantum dots epitaxially grown on Si substrates using an ultrathin SiO2 film technique," Journal of Applied Physics, vol. 105, p. 014308, 2009.
[22] V. Bhagwat, J. P. Langer, I. Bhat, P. S. Dutta, T. Refaat, and M. N. Abedin, "A Comparison of Dry Plasma and Wet Chemical Etching of GaSb Photodiodes," Journal of The Electrochemical Society, vol. 151, p. A728, 2004.
[23] O. Dier, C. Lin, M. Grau, and M.-C. Amann, "Selective and non-selective wet-chemical etchants for GaSb-based materials," SST, vol. 19, pp. 1250-1253, 2004.
[24] S. J. Pearton, W. S. Hobson, U. K. Chakrabarti, J. G. E. Derkits, and A. P. Kinsella, "Dry Etching of GaAs, AIGaAs, and GaSb in Hydrochlorofluorocarbon Mixtures " J. Electrochem, vol. 137, pp. 3892-3899, 1990.
[25] 翁莉娟, "利用快速熱熔磊晶法於矽基板上製備鍺錫合金結構及光致發光光譜特性分析," 國立清華大學光電工程研究所, p. 41, 2016.
[26] J. J. Hsieh, "Thickness and surface morphology of GaAs LPE layers grown by supercooling, step-cooling, equilibrium-cooling, and two-phase solution techniques," Journal of Crystal Growth, vol. 27, pp. 49-61, 1974/12/01 1974.
[27] M. Feng, L. W. Cook, M. M. Tashima, T. H. Windhorn, and G. E. Stillman, "The influence of LPE growth techniques on the alloy composition of InGaAsP," Applied Physics Letters, vol. 34, pp. 292-295, 1979.
[28] 紀國鐘, 蘇炎坤, 褚宏深, and 吳孟奇, "光電半導體技術手冊," 台灣電子材料與元件協會出版, pp. 27-44, 2002.
[29] S. Adachi, "Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y," Journal of Applied Physics, vol. 66, pp. 6030-6040, 1989.