簡易檢索 / 詳目顯示

研究生: 林柏丞
Lin, Bo Cheng
論文名稱: 以0.18μm單層多晶矽CMOS製程開發之懸浮閘電晶體與其寫入準確率修正
Development of Floating Gate MOSFET in 0.18μm Single-Poly CMOS Process and Its Programming Accuracy Correction
指導教授: 鄭桂忠
Tang, Kea Tiong
口試委員: 謝志成
陳新
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 59
中文關鍵詞: 懸浮閘電晶體單層多晶矽懸浮閘電晶體
外文關鍵詞: Floating Gate MOSFET, Single Poly FGMOS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了儲存日常生活中的各種訊號,懸浮閘元件經常被製作為非揮發性記憶體,例如EPROM、Flash Memory等,由於懸浮閘元件相容於標準CMOS邏輯製程,因此有許多研究將其應用於System on Chip上,但是隨著製程微縮精進,懸浮閘電晶體在製作上遇到許多改變,藉由改進製程上遇到的變化造成的影響,將懸浮閘元件實現在先進製程中。
    本論文提出一個使用TSMC 0.18μm CMOS 1P6M的單層多晶矽製程,製作出懸浮閘電晶體元件,藉著研究其在不同偏壓下的各種操作特性,將其元件特性實際應用在電路操作上;此懸浮閘電晶體元件,由兩個PMOS電晶體與一個MOS Varactor組成,使用離子化熱電子注入做為寫入機制,FN穿隧做為抹除機制,藉由量測在不同偏壓條件下的行為,比較懸浮閘電晶體的寫入與抹除特性,同時定出元件操作時的偏壓,最後提出元件耐久度與資料保久度的量測與推算。
    接著根據元件特性,利用適當的電路量測懸浮閘電壓的變化,研究出影響懸浮閘電壓寫入準確度的原因,並且設計出一個解決方式,經過實際量測驗證後,能夠改善懸浮閘電壓寫入準確度,使得寫入結果更為準確,同時對各種的操作情況做討論,也探討了實際應用時可能會遇上的不理想情況。
    最後討論此懸浮閘電晶體可能的改進方向,以及提出的解決方式的優缺點,針對未來可能遇上的問題討論。


    In order to save various kinds of signals, floating gate device is widely used as nonvolatile memories, such as EPROM, Flash memory and so on. Because floating gate device is compatible with strandard CMOS process, there are many researches about applying floating gate device to system on chip. But as process moves into deep-submicron process, there will be many difficulties to achieve floating gate device.
    This study proposes a floating gate device with its characteristics which is manufactured by TSMC 0.18μm CMOS 1P6M single poly process. Proposed floating gate device is constructed with two P-channel MOSFETs and a MOS varactor. This device is programmed by impact ionization hot electron injection, and erased by FN tunneling. We tested this device with many different combinations of biases, then compared the result of programming, erasing, device endurance, and data retention characteristics is given in this study.
    With those device characteristics, by using a basic circuit which can measure the voltage of floating gate, the reasons that influence on the programming accuracy are proposed in this study. Then a solution is proposed to increase the programming accuracy, which is verified by measurement results.
    Finally, possible improvements of this floating gate device are discussed.

    誌 謝 i 摘 要 ii ABSTRACT iii 目 錄 iv 圖 目 錄 vi 表 目 錄 ix 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機及目的 2 1.3 章節架構 3 第2章 文獻回顧 4 2.1 懸浮閘元件基本操作模式 4 2.1.1 熱載子注入理論 (Hot Carrier Injection) 4 2.1.2 FN穿隧理論(Fowler-Nordheim Tunneling) 9 2.1.3 帶對帶穿隧理論 (Band to Band Tunneling) 11 2.2單層多晶矽懸浮閘電晶體製作 12 2.3懸浮閘週邊電壓影響準確度 16 第3章 單層多晶矽懸浮閘電晶體架構與特性分析 17 3.1 元件架構 17 3.2 元件操作機制(寫入、抹除與讀取) 20 3.3 懸浮閘元件操作特性分析 21 3.3.1 寫入操作特性分析 21 3.3.2 抹除操作特性分析 26 3.4 元件可靠度 27 3.4.1元件耐久度(Endurance) 27 3.4.2 資料保久度(Data Retention) 28 3.5 總結 31 第4章 懸浮閘電晶體耦合現象消除與實驗 32 4.1懸浮閘電晶體測試電路 32 4.1.1量測裝置與環境 32 4.1.2電路測試流程 33 4.2 耦合現象成因與消除實驗 34 4.2.1 耦合現象成因探討 34 4.2.2 耦合現象量測結果(基本寫入波形) 37 4.2.3 耦合現象量測結果(Vd線性上升波形) 39 4.2.4 耦合現象量測結果(Vd仿RC電路上升波形) 41 4.2.5 耦合現象量測結果(Vd上升擺幅降低波形) 43 4.3 結論與修改方法 45 4.4 建議方法與驗證 49 4.5 總結 54 第5章 結論與未來展望 55 5.1 結論 55 5.2 未來方向 56 參考文獻 57

    [1] J. Brewer and M. Gill, Nonvolatile Memory Technologies with Emphasis on
    Flash: A Comprehensive Guide to Understanding and Using Flash Memory
    Devices, Hoboken NJ: Wiley-IEEE Press, 2008.
    [2] S. Tam, P. K. Ko, and C. Hu, “Lucky-electron model of channel hot-electron injection in MOSFET’s,” IEEE Transactions on Electron Devices, vol. 31, no. 9, pp. 1116–1125, 1984.
    [3] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2,” Journal of Applied Physics, vol. 40, pp. 278-283, 1969.
    [4] J. Moll, Physics of Semiconductors, New York: McGraw-Hill, 1964.
    [5] K. Ohsaki, N. Asamoto, and S. Takagaki, “A single poly EEPROM cell structure for use in standard CMOS processes, ” IEEE Journal of Solid-State Circuits, vol. 29, pp. 311-316, 1994.
    [6] B. A. Minch and P. Hasler, “A floating-gate technology for digital CMOS processes,” in Circuits and Systems, 1999. ISCAS '99. Proceedings of the 1999 IEEE International Symposium on, vol.2, pp. 400-403, 1999.
    [7] D. W. Graham, E. Farquhar, B. Degnan, C. Gordon, P. Hasler, “Indirect Programming of Floating-Gate Transistors,” IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 951-963, 2007.
    [8] C. M. Twigg, J. D. Gray, P. E. Hasler, ”Programmable Floating Gate FPAA Switches Are Not Dead Weight,” IEEE International Symposium on Circuits and Systems, pp. 169-172, 2007.
    [9] R. R. Harrison, J. A. Bragg, P. Hasler, B. A. Minch, S. P. Deweerth, ” A CMOS programmable analog memory-cell array using floating-gate circuits,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, pp. 4-11, 2001.
    [10] 王博平, “懸浮閘電晶體於0.18μm單層多晶矽CMOS製程之開發與其在類比電路上的應用,” 國立清華大學碩士學位論文, 民國99年.
    [11] 吳欣諭, “單層多晶矽懸浮閘電晶體於0.18μm CMOS製程之研發與其在類比電路的應用,” 國立清華大學碩士學位論文, 民國101年.
    [12] J. Mira, T. Divel, S. Ramet, J. B. Begueret, and Y. Deval, “Distributed MOS varactor biasing for VCO gain equalization in 0.13 μm CMOS technology,” IEEE Radio Frequency Integrated Circuits Symposium, pp.131-134, 2004.
    [13] P. Hasler, J. Dugger, “Correlation learning rule in floating-gate pFET synapses,” IEEE Circuits and Systems, pp. 397-390, 1999.
    [14] P. Hasler, B. A. Minch, C. Diorio, “Adaptive circuits using pFET floating-gate devices,” IEEE Advanced Research in VLSI, pp. 215-229, 1999.
    [15] V. Srinivasan, G. Serrano, C. M. Twigg, P. Hasler, “A Floating-Gate-Based Programmable CMOS Reference,” IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 3448-3456, 2008.
    [16] C. Huang, P. Sarkar, S. Chakrabartty, “Rail-to-Rail, Linear Hot-Electron Injection Programming of Floating-Gate Voltage Bias Generators at 13-Bit Resolution,” IEEE Journal of Solid-State Circuits, pp. 2685-2692, 2011.
    [17] S. S. Jye, Y. C. Song, W. Y. Sen, C. C. H. Hsu, S. D. T. Chang, N. Rodjy, et al., "Novel self-convergent programming scheme for multi-level p-channel flash memory," IEEE International Electron Devices Meeting, pp. 287-290, 1997.
    [18] S. S. Chung, S. T. Liaw, C. M. Yih, Z. H. Ho, C. J. Lin, D. S. Kuo, et al., “N-channel versus p-channel flash EEPROM-which one has better reliabilities,” IEEE Reliability Physics Symposium, pp. 67-72, 2001.
    [19] A. Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS oscillators with switched tuning,” IEEE Custom Integrated Circuits Conference, pp. 555-558, 1998
    [20] 林鴻志, “深次微米閘極技術之發展與未來驅勢(II),” 國家奈米實驗室奈米通訊, vol. 3, pp. 14-21, 1998.
    [21] Y. D. Wu, K. C. Cheng, C. C. Lu, H. Chen,” Embedded Analog Nonvolatile Memory With Bidirectional and Linear Programmability,” IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 88-92, 2012
    [22] S. Aritome, R. Shirota, G. Hemink, T. Endoh, and F. Masuoka, “Reliability issues of flash memory cells,” Proceedings of the IEEE, pp. 776-788, 1993
    [23] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview,” Proceedings of the IEEE, pp. 1248-1271, 1997
    [24] B. De Salvo, G. Ghibaudo, G. Pananakakis, G. Reimbold, F. Mondond, et al., “Experimental and theoretical investigation of nonvolatile memory data-retention,” IEEE Transactions on Electron Devices, pp. 1518-1524, 1999

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE