研究生: |
周銘源 |
---|---|
論文名稱: |
亞砷酸鈉與三氯化銻在淋巴細胞株WTK1及TK6中引起的一氧化氮與抗氧化物變動情形 The Alternations of Nitric Oxide and Antioxidant Molecules Induced by NaAsO2 or SbCl3 in WTK1 and TK6 Cells |
指導教授: |
黃海美
|
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 淋巴細胞株 、抗輻射傷害特性細胞株 、砷耐受性 、銻耐受性 、活性氮化物/活性氧化物 、一氧化氮 、過氧化酵素 、細胞活力 |
外文關鍵詞: | WTK1/TK6, X-ray resistant cell line, arsenite, antimony, RNS/ROS, NO, antioxidants, viability |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要:
WTK1與TK6細胞同樣是前人自WI-L2細胞中,篩選具聚落形成(colony-forming)能力的淋巴母細胞,經過相同變異誘發與篩選過程所得。過去,本實驗室發現WTK1與TK6細胞有相同的砷吸收與累積情形,然而WTK1細胞在相同濃度亞砷酸鈉(NaAsO2)及三氯化銻(SbCl3)4小時處理,更換無藥培養液培養24小時的實驗中,細胞樣本中sub-G1細胞比率較TK6細胞低。
本篇論文就WTK1與TK6細胞處理同濃度的亞砷酸鈉與三氯化銻所產生的細胞毒理反應(cytotoxicity)高低不同,對細胞因亞砷酸鈉或三氯化銻刺激所產生的NO (一氧化氮,nitric oxide)、GSH (穀胱甘 ,glutathione)、GPx(穀胱甘 過氧化酵素,glutathione peroxidase)以及catalase(過氧化氫酵素)進行檢測。WTK1細胞對亞砷酸鈉及三氯化銻的處理,不論是細胞樣本中sub-G1細胞比率的增加或細胞活力(viability)降低的實驗,均表現較TK6細胞高的耐受性。在藥物4小時處理的觀察中,WTK1與TK6細胞中有RNS/ROS (活性氮化物/活性氧化物,reactive nitrogen species/ reactive oxygen species)增加的情形;隨亞砷酸鈉或三氯化銻處理濃度增加,兩細胞中NO產生的增加情形以WTK1細胞較多,GSH含量則僅在TK6細胞中有下降的趨勢,而抗氧化酵素GPx比活性(specific activity),也有隨藥物處理濃度增加的傾向,不過catalase酵素比活性則未呈現變動。量測亞砷酸鈉或三氯化銻4小時處理後,細胞更換無藥培養液培養情況中的catalase酵素比活性,發現catalase酵素比活性在藥物處理後出現因藥物處理濃度的高低而不同的降低情形,且TK6細胞中catalase酵素比活性在同濃度藥物處理後降低的情形較WTK1細胞顯著。然而,以NAME (N□-nitro-L-arginine methyl ester,抑制NO合成)、SNP (sodium nitroprusside,刺激細胞NO產生)、BSO (L-buthionine-[S, R]-sulfoximine,降低GSH)、MS (mercaptosuccinic acid,抑制GPx) 以及AT (aminotriazole,抑制catalase)等藥物與亞砷酸鈉或三氯化銻共同處理的結果,顯示只有NAME、SNP與BSO會影響WTK1與TK6細胞在亞砷酸鈉或三氯化銻處理後出現的細胞活力差異現象。
本論文實驗結果顯示:NO與GSH可能與WTK1和TK6細胞間的亞砷酸鈉或三氯化銻耐受性高低有關;抗氧化酵素GPx和catalase會因砷或銻處理而發生變動,但與WTK1和TK6細胞間的差異無顯著關聯。
Abstract:
WTK1 and TK6 cell lines were derived with both the same mutagenic treatment and mutation selection from different colony-forming subclones of the spleen nonclonal lymphoblastoid isolate--WI-L2. We found that there was a lower sub-G1 cell ratio in WTK1 cell than TK6 cell after incubation in fresh medium for 24 hours with the previous identical concentration 4 hours treatment of sodium arsenite (NaAsO2) or antimony chloride (SbCl3) while the same intake and accumulation of arsenite was performed.
Basing on the difference in cytotoxicity response of WTK1 and TK6 cells after sodium arsenite or antimony chloride treatment, the alternations of NO (nitric oxide), GSH (glutathione), GPx (glutathione peroxidase), and catalase induced by the treatment were examined. WTK1 cells performed a stronger resistance toward sodium arsenite and antimony chloride to TK6 cells in views of sub-G1 cell ratio raise and cell viability decrease. After the 4 hours treatment of arsenite or antimony, there were intracellular RNS/ROS (reactive nitrogen species/ reactive oxygen species) increases in both WTK1 and TK6 cells. With the treatment concentrations of sodium arsenite or antimony chloride raising, the intercellular NO levels were increased more in WTK1 cells, the intracellular GSH amounts were decreased only in TK6 cells, and the GPx specific activities of both cell lines were increased while no obvious change was seen in catalase. The catalase specific activity change of cells incubated in fresh medium after the 4 hours treatment of sodium arsenite or antimony chloride was found to be responsively decreased with different drug concentrations, and larger decrease was seen in TK6 cells in the same treatment. However, after the co-treatments of NAME (N□-nitro-L-arginine methyl ester), SNP (sodium nitroprusside), BSO (L-buthionine-[S, R]-sulfoximine), MS (mercaptosuccinic acid), and AT (aminotriazole) with sodium arsenite or antimony chloride respectively, it was found that only the co-treatments of NAME, SNP and BSO had effects on cell viability decrease.
To sum up, in this thesis, it was suggested that NO and GSH might be involved in the difference of WTK1 and TK6 cell lines toward sodium aresnite and antimony chloride treatments. Intracellular GPx and catalase were changed by the treatments, but their changes might not be involved in the difference.
中英摘要…………………………… 1
簡 介…………………………… 5
實驗方法……………………………13
結 果……………………………16
討 論……………………………22
參考資料……………………………27
圖 表……………………………41
附 錄……………………………59
Adler, V., Z. Yin, K.D. Tew, and Z. Ronai. 1999. Role of redox potential and reactive oxygen species in stress signaling. Oncogene 18: 6104-11.
Akerboom, T.P. and H. Sies. 1981. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 77: 373-82.
Amundson, S.A., F. Xia, K. Wolfson, and H.L. Liber. 1993. Different cytotoxic and mutagenic responses induced by X-rays in two human lymphoblastoid cell lines derived from a single donor. Mutat Res 286: 233-41.
Arrigo, A.P. 1999. Gene expression and the thiol redox state. Free Radic Biol Med 27: 936-44.
Astor, M.B., M.E. Anderson, and A. Meister. 1988. Relationship between intracellular GSH levels and hypoxic cell radiosensitivity. Pharmacol Ther 39: 115-21.
Bartoli, G.M. and H. Sies. 1978. Reduced and oxidized glutathione efflux from liver. FEBS Lett 86: 89-91.
Bellomo, G., M. Vairetti, L. Stivala, F. Mirabelli, P. Richelmi, and S. Orrenius. 1992. Demonstration of nuclear compartmentalization of glutathione in hepatocytes. Proc Natl Acad Sci U S A 89: 4412-6.
Benjamin, M.B., H. Potter, D.W. Yandell, and J.B. Little. 1991. A system for assaying homologous recombination at the endogenous human thymidine kinase gene. Proc Natl Acad Sci U S A 88: 6652-6.
Blackburn, R.V., D.R. Spitz, X. Liu, S.S. Galoforo, J.E. Sim, L.A. Ridnour, J.C. Chen, B.H. Davis, P.M. Corry, and Y.J. Lee. 1999. Metabolic oxidative stress activates signal transduction and gene expression during glucose deprivation in human tumor cells. Free Radic Biol Med 26: 419-30.
Bogdan, G.M., A. Sampayo-Reyes, and H.V. Aposhian. 1994. Arsenic binding proteins of mammalian systems: I. Isolation of three arsenite-binding proteins of rabbit liver. Toxicology 93: 175-93.
Bojes, H.K., K. Datta, J. Xu, A. Chin, P. Simonian, G. Nunez, and J.P. Kehrer. 1997. Bcl-xL overexpression attenuates glutathione depletion in FL5.12 cells following interleukin-3 withdrawal. Biochem J 325: 315-9.
Briviba, K., G. Fraser, H. Sies, and B. Ketterer. 1993. Distribution of the monochlorobimane-glutathione conjugate between nucleus and cytosol in isolated hepatocytes. Biochem J 294: 631-3.
Buchet, J.P., R. Lauwerys, and H. Roels. 1981. Comparison of the urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite, monomethylarsonate, or dimethylarsinate in man. Int Arch Occup Environ Health 48: 71-9.
Cai, J., K. Salmon, and M.S. DuBow. 1998. A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. Microbiology 144: 2705-13.
Carmichael, J., W.G. DeGraff, A.F. Gazdar, J.D. Minna, and J.B. Mitchell. 1987. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47: 936-42.
Chen, C.J., C.W. Chen, M.M. Wu, and T.L. Kuo. 1992. Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br J Cancer 66: 888-92.
Chen, C.Y., F. Del Gatto-Konczak, Z. Wu, and M. Karin. 1998a. Stabilization of interleukin-2 mRNA by the c-Jun NH2-terminal kinase pathway. Science 280: 1945-9.
Chen, Q. and B.N. Ames. 1994. Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc Natl Acad Sci U S A 91: 4130-4.
Chen, Y.C., S.Y. Lin-Shiau, and J.K. Lin. 1998b. Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol 177: 324-33.
Chuang, Y.Y., Q. Chen, J.P. Brown, J.M. Sedivy, and H.L. Liber. 1999. Radiation-induced mutations at the autosomal thymidine kinase locus are not elevated in p53-null cells. Cancer Res 59: 3073-6.
Close, A.H., T.L. Guo, and B.J. Shenker. 1999. Activated human T lymphocytes exhibit reduced susceptibility to methylmercury chloride-induced apoptosis. Toxicol Sci 49: 68-77.
Cotgreave, I.A. and R.G. Gerdes. 1998. Recent trends in glutathione biochemistry--glutathione-protein interactions: a molecular link between oxidative stress and cell proliferation? Biochem Biophys Res Commun 242: 1-9.
Cullen, W.R. and K.J. Reimer. 1989. Environmental arsenic chemistry. Chem. Rev. 89: 713-64.
Dai, J., R.S. Weinberg, S. Waxman, and Y. Jing. 1999. Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood 93: 268-77.
De Bleser, P.J., G. Xu, K. Rombouts, V. Rogiers, and A. Geerts. 1999. Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signaling in activated rat hepatic stellate cells. J Biol Chem 274: 33881-7.
Dixon, H.B.F. 1997. The biochemical action of arsonic acids especially as phosphate analogs. Advanced Inorganic Chemistry 44: 191-227.
Droge, W., V. Hack, R. Breitkreutz, E. Holm, G. Shubinsky, E. Schmid, and D. Galter. 1998. Role of cysteine and glutathione in signal transduction, immunopathology and cachexia. Biofactors 8: 97-102.
Du Pont, O., I. Ariel, and S.L. Warren. 1941. The distribution of radioactive arsenic in the normal and tumor-bearing (Brown-Pearce) rabbit. Am. J. Syph. Gonorrhea Vener. Dis. 26: 96-118.
EPA. 1988. Special report on ingested inorganic arsenic : skin cancer, nutritional essentiality. In . United States. Environmental Protection Agency., Washington, DC.
Esposito, F., F. Cuccovillo, M. Vanoni, F. Cimino, C.W. Anderson, E. Appella, and T. Russo. 1997. Redox-mediated regulation of p21(waf1/cip1) expression involves a post- transcriptional mechanism and activation of the mitogen-activated protein kinase pathway. Eur J Biochem 245: 730-7.
Fehsel, K., A. Jalowy, S. Qi, V. Burkart, B. Hartmann, and H. Kolb. 1993. Islet cell DNA is a target of inflammatory attack by nitric oxide. Diabetes 42: 496-500.
Flohe, L., R. Brigelius-Flohe, C. Saliou, M.G. Traber, and L. Packer. 1997. Redox regulation of NF-kappa B activation. Free Radic Biol Med 22: 1115-26.
Flohe, L., W.A. Gunzler, and H.H. Schock. 1973. Glutathione peroxidase: a selenoenzyme. FEBS Lett 32: 132-4.
Forrester, K., S. Ambs, S.E. Lupold, R.B. Kapust, E.A. Spillare, W.C. Weinberg, E. Felley-Bosco, X.W. Wang, D.A. Geller, E. Tzeng, T.R. Billiar, and C.C. Harris. 1996. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci U S A 93: 2442-7.
Forstermann, U., I. Gath, P. Schwarz, E.I. Closs, and H. Kleinert. 1995. Isoforms of nitric oxide synthase. Properties, cellular distribution and expressional control. Biochem Pharmacol 50: 1321-32.
Fuchs, S.Y., V.A. Fried, and Z. Ronai. 1998. Stress-activated kinases regulate protein stability. Oncogene 17: 1483-90.
Gurr, J.R., F. Liu, S. Lynn, and K.Y. Jan. 1998. Calcium-dependent nitric oxide production is involved in arsenite- induced micronuclei. Mutat Res 416: 137-48.
Ho, Y.S., H.L. Liu, J.S. Duh, R.J. Chen, W.L. Ho, J.H. Jeng, Y.J. Wang, and J.K. Lin. 1999. Induction of apoptosis by S-nitrosoglutathione and Cu2+ or Ni2+ ion through modulation of bax, bad, and bcl-2 proteins in human colon adenocarcinoma cells. Mol Carcinog 26: 201-11.
Hughes, M.F. and E.M. Kenyon. 1998. Dose-dependent effects on the disposition of monomethylarsonic acid and dimethylarsinic acid in the mouse after intravenous administration. J Toxicol Environ Health A 53: 95-112.
IARC. 1980. Arsenic and Arsenic compounds. International Agency for Research on Cancer, Lyon.
Ikeda, K., K. Kajiwara, E. Tanabe, S. Tokumaru, E. Kishida, Y. Masuzawa, and S. Kojo. 1999. Involvement of hydrogen peroxide and hydroxyl radical in chemically induced apoptosis of HL-60 cells. Biochem Pharmacol 57: 1361-5.
Ishinishi, N., A. Yamamoto, A. Hisanaga, and T. Inamasu. 1983. Tumorigenicity of arsenic trioxide to the lung in Syrian golden hamsters by intermittent instillations. Cancer Lett 21: 141-7.
Islam, K.N., Y. Kayanoki, H. Kaneto, K. Suzuki, M. Asahi, J. Fujii, and N. Taniguchi. 1997. TGF-beta1 triggers oxidative modifications and enhances apoptosis in HIT cells through accumulation of reactive oxygen species by suppression of catalase and glutathione peroxidase. Free Radic Biol Med 22: 1007-17.
Ji, Y., T.P. Akerboom, and H. Sies. 1996. Microsomal formation of S-nitrosoglutathione from organic nitrites: possible role of membrane-bound glutathione transferase. Biochem J 313: 377-80.
Ji, Y., T.P. Akerboom, H. Sies, and J.A. Thomas. 1999. S-nitrosylation and S-glutathiolation of protein sulfhydryls by S- nitroso glutathione. Arch Biochem Biophys 362: 67-78.
Jing, Y., J. Dai, R.M. Chalmers-Redman, W.G. Tatton, and S. Waxman. 1999. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94: 2102-11.
Jocelyn, P.C. and J. Dickson. 1980. Glutathione and the mitochondrial reduction of hydroperoxides. Biochim Biophys Acta 590: 1-12.
Kaplowitz, N., J.C. Fernandez-Checa, R. Kannan, C. Garcia-Ruiz, M. Ookhtens, and J.R. Yi. 1996. GSH transporters: molecular characterization and role in GSH homeostasis. Biol Chem Hoppe Seyler 377: 267-73.
Kerwin, J.F., Jr., J.R. Lancaster, Jr., and P.L. Feldman. 1995. Nitric oxide: a new paradigm for second messengers. J Med Chem 38: 4343-62.
Kim-Han, J.S. and A.Y. Sun. 1998. Protection of PC12 cells glutathione peroxidase in L-DOPA induced cytotoxicity. Free Radic Biol Med 25: 512-8.
Lander, H.M., A.J. Milbank, J.M. Tauras, D.P. Hajjar, B.L. Hempstead, G.D. Schwartz, R.T. Kraemer, U.A. Mirza, B.T. Chait, S.C. Burk, and L.A. Quilliam. 1996. Redox regulation of cell signalling. Nature 381: 380-1.
Lander, H.M., J.S. Ogiste, K.K. Teng, and A. Novogrodsky. 1995. p21ras as a common signaling target of reactive free radicals and cellular redox stress. J Biol Chem 270: 21195-8.
Lee, T. 2000. Study on relationship between SbCl3-induced apoptosis and oxidative stress in human lymphoma cells TK6 and WTK1. In Life Science . National Tsing Hua University, Hsin-chu, ROC.
Lee, T.C. and I.C. Ho. 1995. Modulation of cellular antioxidant defense activities by sodium arsenite in human fibroblasts. Arch Toxicol 69: 498-504.
Levy, J.A., M. Virolainen, and V. Defendi. 1968. Human lymphoblastoid lines from lymph node and spleen. Cancer 22: 517-24.
Liang, W.G. 1999. Regulation of arsenite-induced apoptosis in human lymphoblastoid cells. In Life Science . National Tsing Hua University, Hsin-chu.
Liu, F. and K.Y. Jan. 2000. DNA damage in arsenite- and cadmium-treated bovine aortic endothelial cells. Free Radic Biol Med 28: 55-63.
Malyshev, I., E.B. Manukhina, V.D. Mikoyan, L.N. Kubrina, and A.F. Vanin. 1995. Nitric oxide is involved in heat-induced HSP70 accumulation. FEBS Lett 370: 159-62.
Marletta, M.A., P.S. Yoon, R. Iyengar, C.D. Leaf, and J.S. Wishnok. 1988. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 27: 8706-11.
Ming, X.F., M. Kaiser, and C. Moroni. 1998. c-jun N-terminal kinase is involved in AUUUA-mediated interleukin-3 mRNA turnover in mast cells. Embo J 17: 6039-48.
Misko, T.P., R.J. Schilling, D. Salvemini, W.M. Moore, and M.G. Currie. 1993. A fluorometric assay for the measurement of nitrite in biological samples. Anal Biochem 214: 11-6.
Moncada, S., R.M. Palmer, and E.A. Higgs. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109-42.
Muller, S., W.H. Miller, Jr., and A. Dejean. 1998. Trivalent antimonials induce degradation of the PML-RAR oncoprotein and reorganization of the promyelocytic leukemia nuclear bodies in acute promyelocytic leukemia NB4 cells. Blood 92: 4308-16.
Naredi, P., D.D. Heath, R.E. Enns, and S.B. Howell. 1995. Cross-resistance between cisplatin, antimony potassium tartrate, and arsenite in human tumor cells. J Clin Invest 95: 1193-8.
Nguyen, T., D. Brunson, C.L. Crespi, B.W. Penman, J.S. Wishnok, and S.R. Tannenbaum. 1992. DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci U S A 89: 3030-4.
Pershagen, G. and N.E. Bjorklund. 1985. On the pulmonary tumorigenicity of arsenic trisulfide and calcium arsenate in hamsters. Cancer Lett 27: 99-104.
Piette, J., B. Piret, G. Bonizzi, S. Schoonbroodt, M.P. Merville, S. Legrand-Poels, and V. Bours. 1997. Multiple redox regulation in NF-kappaB transcription factor activation. Biol Chem 378: 1237-45.
Romach, E.H., C.Q. Zhao, L.M. Del Razo, M.E. Cebrian, and M.P. Waalkes. 2000. Studies on the mechanisms of arsenic-induced self tolerance developed in liver epithelial cells through continuous low-level arsenite exposure. Toxicol Sci 54: 500-8.
Rosemeyer, M.A. 1987. The biochemistry of glucose-6-phosphate dehydrogenase, 6- phosphogluconate dehydrogenase and glutathione reductase. Cell Biochem Funct 5: 79-95.
Schulze-Osthoff, K., H. Schenk, and W. Droge. 1995. Effects of thioredoxin on activation of transcription factor NF-kappa B. Methods Enzymol 252: 253-64.
Sen, C.K. and L. Packer. 1996. Antioxidant and redox regulation of gene transcription. Faseb J 10: 709-20.
Sen, C.K., H. Sies, and P.A. Baeuerle. 1999. Antioxidant and redox regulation of genes. In . Academic Press., San Diego.
Simmons, T.W. and I.S. Jamall. 1988. Significance of alterations in hepatic antioxidant enzymes. Primacy of glutathione peroxidase. Biochem J 251: 913-7.
Skopek, T.R., H.L. Liber, B.W. Penman, and W.G. Thilly. 1978. Isolation of a human lymphoblastoid line heterozygous at the thymidine kinase locus: possibility for a rapid human cell mutation assay. Biochem Biophys Res Commun 84: 411-6.
Snawder, J.E., M.A. Tirmenstein, P.I. Mathias, and M. Toraason. 1999. Induction of stress proteins in rat cardiac myocytes by antimony. Toxicol Appl Pharmacol 159: 91-7.
Soboll, S., S. Grundel, J. Harris, V. Kolb-Bachofen, B. Ketterer, and H. Sies. 1995. The content of glutathione and glutathione S-transferases and the glutathione peroxidase activity in rat liver nuclei determined by a non- aqueous technique of cell fractionation. Biochem J 311: 889-94.
Somji, S., D.A. Sens, S.H. Garrett, M.A. Sens, and J.H. Todd. 1999. Heat shock protein 27 expression in human proximal tubule cells exposed to lethal and sublethal concentrations of CdCl2. Environ Health Perspect 107: 545-52.
Squibb, K.S. and B.A. Fowler. 1983. The toxicity of arsenic and its compounds. In Biological and environmental effects of arsenitc. Topics in environmental health. (ed. B.A. Flower), pp. 233-269. Elsevier, Amsterdam.
Steiling, H., B. Munz, S. Werner, and M. Brauchle. 1999. Different types of ROS-scavenging enzymes are expressed during cutaneous wound repair. Exp Cell Res 247: 484-94.
Tam, G.K., S.M. Charbonneau, F. Bryce, C. Pomroy, and E. Sandi. 1979. Metabolism of inorganic arsenic (74As) in humans following oral ingestion. Toxicol Appl Pharmacol 50: 319-22.
Tamir, S., S. Burney, and S.R. Tannenbaum. 1996a. DNA damage by nitric oxide. Chem Res Toxicol 9: 821-7.
Tamir, S., T. deRojas-Walker, J.S. Wishnok, and S.R. Tannenbaum. 1996b. DNA damage and genotoxicity by nitric oxide. Methods Enzymol 269: 230-43.
Tamir, S. and S.R. Tannenbaum. 1996. The role of nitric oxide (NO.) in the carcinogenic process. Biochim Biophys Acta 1288: F31-6.
Vahter, M. 1999. Methylation of inorganic arsenic in different mammalian species and population groups. Sci Prog 82: 69-88.
Vahter, M. and E. Marafante. 1983. Intracellular interaction and metabolic fate of arsenite and arsenate in mice and rabbits. Chem Biol Interact 47: 29-44.
van den Dobbelsteen, D.J., C.S. Nobel, J. Schlegel, I.A. Cotgreave, S. Orrenius, and A.F. Slater. 1996. Rapid and specific efflux of reduced glutathione during apoptosis induced by anti-Fas/APO-1 antibody. J Biol Chem 271: 15420-7.
Vina, J., G.T. Saez, D. Wiggins, A.F. Roberts, R. Hems, and H.A. Krebs. 1983. The effect of cysteine oxidation on isolated hepatocytes. Biochem J 212: 39-44.
Voehringer, D.W. 1999. BCL-2 and glutathione: alterations in cellular redox state that regulate apoptosis sensitivity. Free Radic Biol Med 27: 945-50.
Voehringer, D.W., D.J. McConkey, T.J. McDonnell, S. Brisbay, and R.E. Meyn. 1998. Bcl-2 expression causes redistribution of glutathione to the nucleus. Proc Natl Acad Sci U S A 95: 2956-60.
Wahllander, A., S. Soboll, H. Sies, I. Linke, and M. Muller. 1979. Hepatic mitochondrial and cytosolic glutathione content and the subcellular distribution of GSH-S-transferases. FEBS Lett 97: 138-40.
Wang, H.F. and T.C. Lee. 1993. Glutathione S-transferase pi facilitates the excretion of arsenic from arsenic-resistant Chinese hamster ovary cells. Biochem Biophys Res Commun 192: 1093-9.
Wang, T.S. and H. Huang. 1994. Active oxygen species are involved in the induction of micronuclei by arsenite in XRS-5 cells. Mutagenesis 9: 253-7.
Wang, T.S., Y.F. Shu, Y.C. Liu, K.Y. Jan, and H. Huang. 1997. Glutathione peroxidase and catalase modulate the genotoxicity of arsenite. Toxicology 121: 229-37.
Wenz, F., E.I. Azzam, and J.B. Little. 1998. The response of proliferating cell nuclear antigen to ionizing radiation in human lymphoblastoid cell lines is dependent on p53. Radiat Res 149: 32-40.
WHO. 1981. Arsenic. In Environmental health criteria. World Health Organization; Albany, N.Y.
Wiese, C., S.S. Gauny, W.C. Liu, C.L. Cherbonnel-Lasserre, and A. Kronenberg. 2001. Different mechanisms of radiation-induced loss of heterozygosity in two human lymphoid cell lines from a single donor. Cancer Res 61: 1129-37.
Wink, D.A., I. Hanbauer, M.B. Grisham, F. Laval, R.W. Nims, J. Laval, J. Cook, R. Pacelli, J. Liebmann, M. Krishna, P.C. Ford, and J.B. Mitchell. 1996. Chemical biology of nitric oxide: regulation and protective and toxic mechanisms. Curr Top Cell Regul 34: 159-87.
Wink, D.A., K.S. Kasprzak, C.M. Maragos, R.K. Elespuru, M. Misra, T.M. Dunams, T.A. Cebula, W.H. Koch, A.W. Andrews, J.S. Allen, and et al. 1991. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254: 1001-3.
Xia, F. and H.L. Liber. 1997. The tumor suppressor p53 modifies mutational processes in a human lymphoblastoid cell line. Mutat Res 373: 87-97.
Xia, F., X. Wang, Y.H. Wang, N.M. Tsang, D.W. Yandell, K.T. Kelsey, and H.L. Liber. 1995. Altered p53 status correlates with differences in sensitivity to radiation-induced mutation and apoptosis in two closely related human lymphoblast lines. Cancer Res 55: 12-5.
Yamamoto, Y. and K. Takahashi. 1993. Glutathione peroxidase isolated from plasma reduces phospholipid hydroperoxides. Arch Biochem Biophys 305: 541-5.
Ye, J., S. Wang, S.S. Leonard, Y. Sun, L. Butterworth, J. Antonini, M. Ding, Y. Rojanasakul, V. Vallyathan, V. Castranova, and X. Shi. 1999. Role of reactive oxygen species and p53 in chromium(VI)-induced apoptosis. J Biol Chem 274: 34974-80.
Yu, Y., C.Y. Li, and J.B. Little. 1997. Abrogation of p53 function by HPV16 E6 gene delays apoptosis and enhances mutagenesis but does not alter radiosensitivity in TK6 human lymphoblast cells. Oncogene 14: 1661-7.
Zhang, X., R. Cornelis, J. De Kimpe, L. Mees, and N. Lameire. 1997. Speciation of arsenic in serum, urine, and dialysate of patients on continuous ambulatory peritoneal dialysis. Clin Chem 43: 406-8.
Zhang, X., R. Cornelis, J. de Kimpe, L. Mees, and N. Lameire. 1998a. Study of arsenic-protein binding in serum of patients on continuous ambulatory peritoneal dialysis. Clin Chem 44: 141-7.
Zhang, X., R. Cornelis, L. Mees, R. Vanholder, and N. Lameire. 1998b. Chemical speciation of arsenic in serum of uraemic patients. Analyst 123: 13-7.
Zhen, W., C.M. Denault, K. Loviscek, S. Walter, L. Geng, and A.T. Vaughan. 1995. The relative radiosensitivity of TK6 and WI-L2-NS lymphoblastoid cells derived from a common source is primarily determined by their p53 mutational status. Mutat Res 346: 85-92.
Zhuang, J.C., T.L. Wright, T. deRojas-Walker, S.R. Tannenbaum, and G.N. Wogan. 2000. Nitric oxide-induced mutations in the HPRT gene of human lymphoblastoid TK6 cells and in Salmonella typhimurium. Environ Mol Mutagen 35: 39-47.