研究生: |
洪嘉億 Hung, Chia-I |
---|---|
論文名稱: |
氧化鋅-奈米碳管複材之光電性質研究 Study on electro-optical effects of ZnO-coated carbon nanotubes |
指導教授: |
徐文光
Hsu, Wen-Kuang |
口試委員: |
林樹均
Lin, Su-Jien 吳志明 Wu, Jyh-Ming 張仕欣 Chang, Shih-Hsin 魏碧玉 Wei, Bi-Yu |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 92 |
中文關鍵詞: | 奈米碳管 、氧化鋅 、原子層沈積法 、光電性質 |
外文關鍵詞: | CNTs, ZnO, ALD, Electro-optical |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
由於機緣巧合,博士班的五年當中,除了在徐老師實驗室做了碳管相關的研究,更在中央研究院張仕欣老師協助下參與掃描探針顯微鏡的研究,也因此接觸了石墨烯(Graphene)的領域,也與逸帆合作了這部分的相關研究。博三下前往德國海德堡大學做了一年關於自組裝分子(Self-Assembly Molecular)、孔性金屬-有機配位聚合物(Surface Metal Organic Framework)的研究。因此,本論文主要藉著表面分析儀器,探討四種不同碳材料在應用上的性質。
第一章
簡介四種碳材(CNT, Graphene, SAMs, SurMOFs)的相關性質,包含結構、電性、化學性質及可能的應用。此外,並論述了各種材料的合成方式、結構分析方法,包含X-Rray、拉曼光譜分析及ESCA等。
第二章
本章節主要探討藉著原子層積法將良好的光電材料氧化鋅鍍於垂直陣列的奈米碳管上,從XRD的分析當中發現了碳酸鋅介穩物質的存在,藉由不同鍍膜時間的氧化鋅/奈米碳管的結構中,試著由TEM、XRD和歐傑電子預測了可能的成長機制。另外,在光學部分,光激發螢光量測結果說明了附著於碳管上的氧化鋅仍維持了獨特的光學性質,並大幅增進了碳管的光電流效應。
第三章
此章主要研究關於藉由在金屬表面吸附上石墨烯碎片,利用石墨烯有大的比表面積,能快速吸附酸性離子的特性,有效改善金屬在酸液中抗腐蝕的問題。
附錄A
本章介紹兩種新世代發展的奈米材料,自組裝分子膜和孔性金屬-有機配位聚合物。第一部分,利用水銀液滴量測法量測硒和硫基底的自組裝分子模,從I-V圖中得知硒基底的分子模擁有較好的導電能力,並利用文獻證明之。第二部分,同樣藉由水銀液滴量測法瞭解SurMOFs的導電度與MOFs的厚度成反比,然後,藉著浸泡進二茂鐵水溶液,有效的將鐵離子摻雜入有機鍊的孔洞中,改變電子傳輸途徑,大幅增加導電能力。
Abstract
Carbon nanotubes (CNTs), graphene, self assembly molecular (SAM) and surface metal of framework (SurMOF) are studied and are presented in this thesis. Five chapters with three main topics are discussed and abstracts of each chapter are described as followings.
Chapter 1 introduces the background of each carbon materials, including the structure, electronic properties, and chemical properties. In addition, theories of the produced, analyzed instruments and techniques employed are also discussed.
Chapter 2 discusses the properties of ZnO coated aligned multi-walled CNTs. Zinc carbonates are identified at interface of CNTs and ZnO which provide the evidence of growing processes. Futuremore, Oxide coats remain optically active at ultraviolet (UV) wavelength and emissions through near-band-edge (NBE) transitions are verified by photoluminescence (PL) profiles at low and room temperature. Upon photoexcitation, fully coated tubes exhibit an increased photocurrent (Iph) and quantum efficiency.
Chapter 3 demonstrates the graphene’s family, graphene nano-flakes (GNFs) used for protecting metals from electrochemical degradation. With high specific surface area comparing to graphene, GNFs play a important role as a filter to prevent the ions close to metal surfaces, which promotes resistance to corrosion. In addition, GNFs can be easily made and their flexibility shows potential as passivation layers for metals.
Appendix A measures the electronic property of SAMs and a newly developed material known as SurMOFs. In the first part, the I-V diagram indicates selenium-based materials have a higher electronic conductivity than that of sulfur-based SAMs. In the second part, the resistance of SurMOFs and thickness are measured and found in direct proportion. In addition, immersing of MOFs into Fe2+-containing ferrocene solution modifies structure and greatly improves the electronic conductivity.
Chapter 1
1. Curl, R.F., Dawn of the fullerenes: Experiment and conjecture. Reviews of Modern Physics, 1997. 69(3): p. 691-702.
2. Kroto, H., Symmetry, space, stars and C-60. Reviews of Modern Physics, 1997. 69(3): p. 703-722.
3. Iijima, S. and T. Ichihashi, Single-Shell Carbon Nanotubes of 1-Nm Diameter. Nature, 1993. 363(6430): p. 603-605.
4. Kroto, H.W., New horizons in the structure and properties of layered materials. Synthesis and Characterization of Advanced Materials, 1998. 681: p. 6-10.
5. Odom, T.W., et al., Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 1998. 391(6662): p. 62-64.
6. Ohnishi, H., Y. Kondo, and K. Takayanagi, Quantized conductance through individual rows of suspended gold atoms. Nature, 1998. 395(6704): p. 780-783.
7. Wildoer, J.W.G., et al., Electronic structure of atomically resolved carbon nanotubes. Nature, 1998. 391(6662): p. 59-62.
8. Seifert, G., et al., Structure and electronic properties of MoS2 nanotubes. Physical Review Letters, 2000. 85(1): p. 146-149.
9. Dresselhaus, M.S., G. Dresselhaus, and P.C. Eklund, Raman scattering in fullerenes. Journal of Raman Spectroscopy, 1996. 27(3-4): p. 351-371.
10. Yakobson, B.I. and R.E. Smalley, Fullerene nanotubes: C-1000000 and beyond. American Scientist, 1997. 85(4): p. 324-337.
11. Ajayan, P.M. and S. Iijima, Smallest Carbon Nanotube. Nature, 1992. 358(6381): p. 23-23.
12. Charlier, J.C. and J.P. Michenaud, Energetics of Multilayered Carbon Tubules. Physical Review Letters, 1993. 70(12): p. 1858-1861.
13. Ebbesen, T.W. and P.M. Ajayan, Large-Scale Synthesis of Carbon Nanotubes. Nature, 1992. 358(6383): p. 220-222.
14. Dresselhaus, M.S., et al., Electronic, thermal and mechanical properties of carbon nanotubes. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2004. 362(1823): p. 2065-2098.
15. Hamada, N., S. Sawada, and A. Oshiyama, New One-Dimensional Conductors - Graphitic Microtubules. Physical Review Letters, 1992. 68(10): p. 1579-1581.
16. Mintmire, J.W., B.I. Dunlap, and C.T. White, Are Fullerene Tubules Metallic. Physical Review Letters, 1992. 68(5): p. 631-634.
17. Chico, L., et al., Pure carbon nanoscale devices: Nanotube heterojunctions. Physical Review Letters, 1996. 76(6): p. 971-974.
18. Kiang, C.H., et al., Size effects in carbon nanotubes. Physical Review Letters, 1998. 81(9): p. 1869-1872.
19. Kim, L., et al., Diameter control of carbon nanotubes by changing the concentration of catalytic metal ion solutions. Carbon, 2005. 43(7): p. 1453-1459.
20. Wang, N., et al., Materials science - Single-walled 4 angstrom carbon nanotube arrays. Nature, 2000. 408(6808): p. 50-51.
21. Yang, Q.H., et al., Large-diameter single-walled carbon nanotubes synthesized by chemical vapor deposition. Advanced Materials, 2003. 15(10): p. 792-+.
22. Krishnan, A., et al., Young's modulus of single-walled nanotubes. Physical Review B, 1998. 58(20): p. 14013-14019.
23. Li, C.Y. and T.W. Chou, Elastic properties of single-walled carbon nanotubes in transverse directions. Physical Review B, 2004. 69(7).
24. Lu, J.P., Elastic properties of carbon nanotubes and nanoropes. Physical Review Letters, 1997. 79(7): p. 1297-1300.
25. Ozaki, T., Y. Iwasa, and T. Mitani, Stiffness of single-walled carbon nanotubes under large strain. Physical Review Letters, 2000. 84(8): p. 1712-1715.
26. Ruoff, R.S. and D.C. Lorents, Mechanical and Thermal-Properties of Carbon Nanotubes. Carbon, 1995. 33(7): p. 925-930.
27. Walters, D.A., et al., Elastic strain of freely suspended single-wall carbon nanotube ropes. Applied Physics Letters, 1999. 74(25): p. 3803-3805.
28. Yakobson, B.I., C.J. Brabec, and J. Bernholc, Nanomechanics of carbon tubes: Instabilities beyond linear response. Physical Review Letters, 1996. 76(14): p. 2511-2514.
29. Yu, M.F., et al., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 2000. 287(5453): p. 637-640.
30. Coulson, C.A. and R. Taylor, Studies in Graphite and Related Compounds .1. Electronic Band Structure in Graphite. Proceedings of the Physical Society of London Section A, 1952. 65(394): p. 815-825.
31. Overney, G., W. Zhong, and D. Tomanek, Structural Rigidity and Low-Frequency Vibrational-Modes of Long Carbon Tubules. Zeitschrift Fur Physik D-Atoms Molecules and Clusters, 1993. 27(1): p. 93-96.
32. Castro Neto, A.H., et al., The electronic properties of graphene. Reviews of Modern Physics, 2009. 81(1): p. 109-162.
33. Weiss, N.O., et al., Graphene: An Emerging Electronic Material. Advanced Materials, 2012. 24(43): p. 5782-5825.
34. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
35. Geim, A.K., Random Walk to Graphene. International Journal of Modern Physics B, 2011. 25(30): p. 4055-4080.
36. Novoselov, K.S., Graphene: Materials in the Flatland (Nobel Lecture). Angewandte Chemie-International Edition, 2011. 50(31): p. 6986-7002.
37. Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321(5887): p. 385-388.
38. Gaudi, B.S., et al., Discovery of a Jupiter/Saturn analog with gravitational microlensing. Science, 2008. 319(5865): p. 927-930.
39. Liu, X., et al., Shear Modulus of Monolayer Graphene Prepared by Chemical Vapor Deposition. Nano Letters, 2012. 12(2): p. 1013-1017.
40. Slonczewski, J.C. and P.R. Weiss, Band Structure of Graphite. Physical Review, 1958. 109(2): p. 272-279.
41. Neto, A.H.C., Electronic and structural properties of graphene. Abstracts of Papers of the American Chemical Society, 2009. 238.
42. Feher, A., et al., Impurity levels in the electronic spectra of graphene. Superlattices and Microstructures, 2013. 53: p. 55-62.
43. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9-10): p. 351-355.
44. Du, X., et al., Approaching ballistic transport in suspended graphene. Nature Nanotechnology, 2008. 3(8): p. 491-495.
45. Monteverde, M., et al., Transport and Elastic Scattering Times as Probes of the Nature of Impurity Scattering in Single-Layer and Bilayer Graphene. Physical Review Letters, 2010. 104(12).
46. Castro, E.V., et al., Limits on Charge Carrier Mobility in Suspended Graphene due to Flexural Phonons. Physical Review Letters, 2010. 105(26).
47. Rader, H.J., et al., Processing of giant graphene molecules by soft-landing mass spectrometry. Nature Materials, 2006. 5(4): p. 276-280.
48. Kuc, A., T. Heine, and G. Seifert, Structural and electronic properties of graphene nanoflakes. Physical Review B, 2010. 81(8).
49. Frenking, G., Perspective on "Quantentheoretische beitrage zum benzolproblem. I. Die elektronenkonfiguration des benzols und verwandter beziehungen" - Huckel E (1931) Z Phys 70 : 204-286. Theoretical Chemistry Accounts, 2000. 103(3-4): p. 187-189.
50. Zhou, J., et al., Intrinsic ferromagnetism in two-dimensional carbon structures: Triangular graphene nanoflakes linked by carbon chains. Physical Review B, 2011. 84(8).
51. Romanovsky, I., C. Yannouleas, and U. Landman, Graphene flakes with defective edge terminations: Universal and topological aspects, and one-dimensional quantum behavior. Physical Review B, 2012. 86(16).
52. Schreiber, F., Structure and growth of self-assembling monolayers. Progress in Surface Science, 2000. 65(5-8): p. 151-256.
53. Tredgold, R.H., An Introduction to Ultrathin Organic Films - from Langmuir-Blodgett to Self-Assembly - Ulman,A. Nature, 1991. 354(6349): p. 120-120.
54. Ulman, A., Formation and structure of self-assembled monolayers. Chemical Reviews, 1996. 96(4): p. 1533-1554.
55. Xie, Z.X., J. Charlier, and J. Cousty, Molecular structure of self-assembled pyrrolidone monolayers on the Au (111) surface: formation of hydrogen bond-stabilized hexamers. Surface Science, 2000. 448(2-3): p. 201-211.
56. Love, J.C., et al., Formation and structure of self-assembled monolayers of alkanethiolates on palladium. Journal of the American Chemical Society, 2003. 125(9): p. 2597-2609.
57. Love, J.C., et al., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews, 2005. 105(4): p. 1103-1169.
58. Laibinis, P.E., et al., Comparison of the Structures and Wetting Properties of Self-Assembled Monolayers of Normal-Alkanethiols on the Coinage Metal-Surfaces, Cu, Ag, Au. Journal of the American Chemical Society, 1991. 113(19): p. 7152-7167.
59. Sellers, H., et al., Structure and Binding of Alkanethiolates on Gold and Silver Surfaces - Implications for Self-Assembled Monolayers. Journal of the American Chemical Society, 1993. 115(21): p. 9389-9401.
60. Fenter, P., A. Eberhardt, and P. Eisenberger, Self-Assembly of N-Alkyl Thiols as Disulfides on Au(111). Science, 1994. 266(5188): p. 1216-1218.
61. Fenter, P., et al., Structure of Ch3(Ch2)17sh Self-Assembled on the Ag(111) Surface - an Incommensurate Monolayer. Langmuir, 1991. 7(10): p. 2013-2016.
62. Fenter, P., P. Eisenberger, and K.S. Liang, Chain-Length Dependence of the Structures and Phases of Ch3(Ch2)N-1sh Self-Assembled on Au(111). Physical Review Letters, 1993. 70(16): p. 2447-2450.
63. Hahner, G., et al., Structure of Self-Organizing Organic Films - a near Edge X-Ray Absorption Fine-Structure Investigation of Thiol Layers Adsorbed on Gold. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1992. 10(4): p. 2758-2763.
64. Nuzzo, R.G., L.H. Dubois, and D.L. Allara, Fundamental-Studies of Microscopic Wetting on Organic-Surfaces .1. Formation and Structural Characterization of a Self-Consistent Series of Polyfunctional Organic Monolayers. Journal of the American Chemical Society, 1990. 112(2): p. 558-569.
65. Ulman, A., J.E. Eilers, and N. Tillman, Packing and Molecular-Orientation of Alkanethiol Monolayers on Gold Surfaces. Langmuir, 1989. 5(5): p. 1147-1152.
66. Shaporenko, A., et al., Structural forces in self-assembled monolayers: Terphenyl-substituted alkanethiols on noble metal substrates. Journal of Physical Chemistry B, 2004. 108(38): p. 14462-14469.
67. Cyganik, P., et al., Self-assembled monolayers of omega-biphenylalkanethiols on Au(111): Influence of spacer chain on molecular packing. Journal of Physical Chemistry B, 2004. 108(16): p. 4989-4996.
68. Shaporenko, A., et al., Odd-even effects in photoemission from terphenyl-substituted alkanethiolate self-assembled monolayers. Langmuir, 2005. 21(10): p. 4370-4375.
69. Azzam, W., et al., Combined STM and FTIR characterization of terphenylalkanethiol monolayers on Au(111): Effect of alkyl chain length and deposition temperature. Langmuir, 2006. 22(8): p. 3647-3655.
70. Shaporenko, A., et al., Balance of structure-building forces in selenium-based self-assembled monolayers. Journal of the American Chemical Society, 2007. 129(8): p. 2232-+.
71. Heinke, L. and C. Woll, Adsorption and diffusion in thin films of nanoporous metal-organic frameworks: ferrocene in SURMOF Cu-2(ndc)(2)(dabco). Physical Chemistry Chemical Physics, 2013. 15(23): p. 9295-9299.
72. Liu, B., et al., Enantiopure Metal-Organic Framework Thin Films: Oriented SURMOF Growth and Enantioselective Adsorption. Angewandte Chemie-International Edition, 2012. 51(3): p. 807-810.
73. Ladnorg, T., et al., Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting. Beilstein Journal of Nanotechnology, 2013. 4: p. 638-648.
74. Dragasser, A., et al., Redox mediation enabled by immobilised centres in the pores of a metal-organic framework grown by liquid phase epitaxy. Chemical Communications, 2012. 48(5): p. 663-665.
75. Heinke, L., Z.G. Gu, and C. Woll, The surface barrier phenomenon at the loading of metal-organic frameworks. Nature Communications, 2014. 5.
76. Hammond, M.L., Introduction to Chemical Vapor-Deposition. Solid State Technology, 1979. 22(12): p. 61-65.
77. Higashi, N., et al., New control method for low temperature deposition limit of metalorganic chemical vapor deposition (MOCVD) by the introduction of organic vapor-application to ZrO2 film preparation. Thin Solid Films, 2002. 409(1): p. 23-27.
78. Okamoto, S., Introduction to Metal Finishing Technology - Chemical Vapor-Deposition (Cvd). Journal of Japan Society of Lubrication Engineers, 1976. 21(6): p. 367-371.
79. Bouman, M. and F. Zaera, The Surface Chemistry of Atomic Layer Deposition (ALD) Processes for Metal Nitride and Metal Oxide Film Growth. Atomic Layer Deposition Applications 6, 2010. 33(2): p. 291-305.
80. Suntola, T., Surface chemistry of materials deposition at atomic layer level. Applied Surface Science, 1996. 100: p. 391-398.
81. Tiznado, H., Surface chemistry of the atomic layer deposition of tin films. Abstracts of Papers of the American Chemical Society, 2005. 229: p. U660-U660.
82. Jones, A.A.D. and A.D. Jones, Numerical simulation and verification of gas transport during an atomic layer deposition process. Materials Science in Semiconductor Processing, 2014. 21: p. 82-90.
83. Aleskovskii, V.B., Chemistry and Technology of Solids. Journal of Applied Chemistry of the Ussr, 1974. 47(10): p. 2207-2217.
84. Suntola, T., Atomic Layer Epitaxy. Thin Solid Films, 1992. 216(1): p. 84-89.
85. Lakomaa, E.L., S. Haukka, and T. Suntola, Atomic Layer Growth of Tio2 on Silica. Applied Surface Science, 1992. 60-1: p. 742-748.
86. Suntola, T. and J. Hyvarinen, Atomic Layer Epitaxy. Annual Review of Materials Science, 1985. 15: p. 177-195.
87. Schmidt, J., et al., Atomic-Layer-Deposited Aluminum Oxide for the Surface Passivation of High-Efficiency Silicon Solar Cells. Pvsc: 2008 33rd Ieee Photovoltaic Specialists Conference, Vols 1-4, 2008: p. 1158-1162.
88. Tsvetkov, V.K., V.N. Pak, and V.B. Aleskovskii, Use of Diffuse-Reflection Spectra for Investigation of Products of Ion-Exchange Stage of Co(Ii) Sorption by Surfaces of Oxides Sio2.Nh2o Al2o3.Nh2o, Tio2.Nh2o, Sb2o5.Nh2o. Journal of Applied Chemistry of the Ussr, 1976. 49(3): p. 529-533.
89. Carmichael, H.J., et al., Photon Antibunching in Resonance Fluorescence in the Presence of Atomic-Number Fluctuations. Optica Acta, 1980. 27(5): p. 581-586.
90. Grangier, P., et al., Observation of Photon Antibunching in Multiatom Resonance Fluorescence. Journal of the Optical Society of America B-Optical Physics, 1986. 3(8): p. P86-P87.
91. Umar, A. and Y.B. Hahn, Ultraviolet-emitting ZnO nanostructures on steel alloy substrates: Growth and properties. Crystal Growth & Design, 2008. 8(8): p. 2741-2747.
92. Gfroerer, T.H., Photoluminescence in Analysis of Surfaces and Interfaces. Encyclopedia of Analytical Chemistry. 2006. 9209–9231.
93. Raman, C.V., A change of wave-length in light scattering. Nature, 1928. 121: p. 619-619.
94. Raman, C.V. and K.S. Krishnan, A new type of secondary radiation. Nature, 1928. 121: p. 501-502.
95. Junger, M.C., Rayleigh-Scattering by Compressible, Movable Bodies of Revolution. Journal of the Acoustical Society of America, 1981. 69(6): p. 1568-1572.
96. Dresselhaus, M.S., et al., Raman spectroscopy of carbon nanotubes. Physics Reports-Review Section of Physics Letters, 2005. 409(2): p. 47-99.
97. Gregan, E., et al., Use of Raman spectroscopy in the investigation of debundling of single walled carbon nanotubes. Opto-Ireland 2005: Optical Sensing and Spectroscopy, 2005. 5826: p. 56-66.
98. Hulman, M., et al., Raman spectroscopy of single-wall carbon nanotubes and graphite irradiated by gamma rays. Journal of Applied Physics, 2005. 98(2).
99. Kim, U.J., et al., Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. Journal of the American Chemical Society, 2005. 127(44): p. 15437-15445.
100. Ijsseling, F.P., Electrochemical Methods in Crevice Corrosion Testing - Report Prepared for the European-Federation-of-Corrosion-Working-Party Physicochemical Testing Methods of Corrosion - Fundamentals and Applications. British Corrosion Journal, 1980. 15(2): p. 51-69.
101. Geiger, W.E., Organometallic electrochemistry: Origins, development, and future. Organometallics, 2007. 26(24): p. 5738-5765.
102. Amatore, C., et al., Molecular electrochemistry and organic and organometallic reactivity. Actualite Chimique, 1998(8-9): p. 43-62.
103. Fletcher, S., G. Inzelt, and F. Scholz, Electrochemistry-past, present, and future. Journal of Solid State Electrochemistry, 2011. 15(7-8): p. 1295-1296.
104. Siegbahn, K., Electron-Spectroscopy for Atoms, Molecules, and Condensed Matter. Science, 1982. 217(4555): p. 111-121.
105. Ray, S. and A.G. Shard, Quantitative Analysis of Adsorbed Proteins by X-ray Photoelectron Spectroscopy. Analytical Chemistry, 2011. 83(22): p. 8659-8666.
Chapter 2
1. Kane, C.L. and E.J. Mele, Size, shape, and low energy electronic structure of carbon nanotubes. Physical Review Letters, 1997. 78(10): p. 1932-1935.
2. Hamada, N., S. Sawada, and A. Oshiyama, New One-Dimensional Conductors - Graphitic Microtubules. Physical Review Letters, 1992. 68(10): p. 1579-1581.
3. Liao, K. and S. Li, Interfacial characteristics of a carbon nanotube-polystyrene composite system. Applied Physics Letters, 2001. 79(25): p. 4225-4227.
4. Zhao, W., C.H. Song, and P.E. Pehrsson, Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. Journal of the American Chemical Society, 2002. 124(42): p. 12418-12419.
5. Hu, C.J., et al., ZnO-Coated Carbon Nanotubes: Flexible Piezoelectric Generators. Advanced Materials, 2011. 23(26): p. 2941-+.
6. Lin, Y.H., et al., Excellent cushioning by polymer-concreted arrays of aligned carbon nanotubes. Journal of Materials Chemistry, 2011. 21(33): p. 12485-12488.
7. Hungria, A.B., et al., 3-D Characterization of CdSe Nanoparticles Attached to Carbon Nanotubes. Nano Research, 2008. 1(1): p. 89-97.
8. Aarik, J., et al., Atomic layer growth of epitaxial TiO2 thin films from TiCl4 and H2O on alpha-Al2O3 substrates. Journal of Crystal Growth, 2002. 242(1-2): p. 189-198.
9. Wu, J.L., et al., Annealed binary nanowires: an efficient creation of abundant oxygen deficient states. Journal of Materials Chemistry, 2011. 21(32): p. 11730-11733.
10. Eder, D., Carbon Nanotube-Inorganic Hybrids. Chemical Reviews, 2010. 110(3): p. 1348-1385.
11. Choi, W.B., et al., Fully sealed, high-brightness carbon-nanotube field-emission display. Applied Physics Letters, 1999. 75(20): p. 3129-3131.
12. Shim, E.S., et al., Effect of the variation of film thickness on the structural and optical properties of ZnO thin films deposited on sapphire substrate using PLD. Applied Surface Science, 2002. 186(1-4): p. 474-476.
13. Liu, J.Z., et al., Bending and bundling of metal-free vertically aligned ZnO nanowires due to electrostatic interaction. Nanotechnology, 2008. 19(18).
14. Lu, S.Y., et al., TiO2-coated carbon nanotubes: A redshift enhanced photocatalysis at visible light. Applied Physics Letters, 2010. 96(23).
15. Lim, J.M., et al., Photoluminescence Studies of ZnO thin films grown by atomic layer epitaxy. Journal of Luminescence, 2004. 109(3-4): p. 181-185.
16. Li, X.L., et al., Atomic Layer Deposition of ZnO on Multi-walled Carbon Nanotubes and Its Use for Synthesis of CNT-ZnO Heterostructures. Nanoscale Research Letters, 2010. 5(11): p. 1836-1840.
17. Li, Y.F., et al., A gas-phase hydrophilization of carbon nanotubes by xenon excimer ultraviolet irradiation. Journal of Materials Chemistry, 2009. 19(37): p. 6761-6765.
18. Kim, A., et al., Preparation and Characteristics of SiOx Coated Carbon Nanotubes with High Surface Area. Nanomaterials, 2012. 2(2): p. 206-216.
19. Kanari, N., et al., Thermal decomposition of zinc carbonate hydroxide. Thermochimica Acta, 2004. 410(1-2): p. 93-100.
20. Kovtyukhova, N.I., et al., Individual single-walled nanotubes and hydrogels made by oxidative exfoliation of carbon nanotube ropes. Journal of the American Chemical Society, 2003. 125(32): p. 9761-9769.
21. Liu, M.H., et al., Chemical modification of single-walled carbon nanotubes with peroxytrifluoroacetic acid. Carbon, 2005. 43(7): p. 1470-1478.
22. Hsu, W.K., et al., Metallic behaviour of boron-containing carbon nanotubes. Chemical Physics Letters, 2000. 323(5-6): p. 572-579.
23. Przezdziecka, E., et al., Photoluminescence, electrical and structural properties of ZnO films, grown by ALD at low temperature. Semiconductor Science and Technology, 2009. 24(10).
24. Reynolds, D.C., et al., Neutral-donor-bound-exciton complexes in ZnO crystals. Physical Review B, 1998. 57(19): p. 12151-12155.
25. Li, C.C., et al., Creation of interfacial phonons by carbon nanotube-polymer coupling. Physical Chemistry Chemical Physics, 2009. 11(29): p. 6034-6037.
26. Barkelid, M. and V. Zwiller, Photocurrent generation in semiconducting and metallic carbon nanotubes. Nature Photonics, 2014. 8(1): p. 48-52.
27. Derycke, V., et al., Controlling doping and carrier injection in carbon nanotube transistors. Applied Physics Letters, 2002. 80(15): p. 2773-2775.
28. Lin, C.C., et al., Electron transport behavior of individual zinc oxide coated single-walled carbon nanotubes. Nanotechnology, 2009. 20(10).
29. Lin, Y.H., et al., Why aggregated carbon nanotubes exhibit low quantum efficiency. Physical Chemistry Chemical Physics, 2011. 13(15): p. 7118-7122
Chpater 3
1. Shama, G., Comment on the paper entitled "Drugs: A review of promising novel corrosion inhibitors" by G. Gece - A (corrosion-free) bridge too far? Corrosion Science, 2012. 60: p. 1-2.
2. Ramachandran, S., et al., The SAM mechanism of corrosion inhibition for iron surfaces. New Techniques for Characterizing Corrosion and Stress Corrosion, 1996: p. 117-127.
3. Silva, D.P.B., R.S. Neves, and A.J. Motheo, Corrosion Protection of Aluminum Alloys by Methoxy-Silanes(SAM)/Polyaniline Double Films. 18 Simposio Brasileiro De Eletroquimica E Eletroanalitica (Xviii Sibee), 2012. 43(1): p. 57-64.
4. Mert, B.D., B. Yazici, and S.B. Lyon, Electrochemical synthesis of novel conductive polymer and corrosion protection properties on aluminium. Corrosion Engineering Science and Technology, 2013. 48(7): p. 506-512.
5. Etaiw, S.E.H., et al., Structure, Characterization and Anti-Corrosion Activity of the New Metal-Organic Framework [Ag(qox)(4-ab)]. Journal of Inorganic and Organometallic Polymers and Materials, 2011. 21(2): p. 327-335.
6. Yan, X.Z., Y. Romiah, and C.S. Ting, Electric transport theory of Dirac fermions in graphene. Physical Review B, 2008. 77(12).
7. Prasai, D., et al., Graphene: Corrosion-Inhibiting Coating. Acs Nano, 2012. 6(2): p. 1102-1108.
8. Tuberquia, J.C., et al., Graphene: Corrosion-Inhibiting Coating (vol 6, pg 1102, 2012). Acs Nano, 2012. 6(5): p. 4540-4540.
9. Singh, S.K., M. Neek-Amal, and F.M. Peeters, Electronic properties of graphene nano-flakes: Energy gap, permanent dipole, termination effect, and Raman spectroscopy. Journal of Chemical Physics, 2014. 140(7).
10. Lu, C.C., et al., Characterization of Graphene Grown on Bulk and Thin Film Nickel. Langmuir, 2011. 27(22): p. 13748-13753.
11. Kao, Y.F., et al., Electrochemical passive properties of AlxCoCrFeNi (x=0, 0.25, 0.50, 1.00) alloys in sulfuric acids. Corrosion Science, 2010. 52(3): p. 1026-1034.
12. Power, G.P. and I.M. Ritchie, Mixed Potential Measurements in the Elucidation of Corrosion Mechanisms .1. Introductory Theory. Electrochimica Acta, 1981. 26(8): p. 1073-1078.
13. Kirkland, N.T., et al., Exploring graphene as a corrosion protection barrier. Corrosion Science, 2012. 56: p. 1-4.
14. Gupta, A., et al., Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Letters, 2006. 6(12): p. 2667-2673.
15. Schrader, B., Applications of Raman spectroscopy in the near-infrared range. Part II. Chemie in Unserer Zeit, 1997. 31(6): p. 270-279.
16. Raman, R.K.S., et al., Protecting copper from electrochemical degradation by graphene coating. Carbon, 2012. 50(11): p. 4040-4045.
17. Ahmed, R. and K. Reifsnider, Study of Influence of Electrode Geometry on Impedance Spectroscopy. International Journal of Electrochemical Science, 2011. 6(4): p. 1159-1174.
18. Skale, S., V. Dolecek, and M. Slemnik, Substitution of the constant phase element by Warburg impedance for protective coatings. Corrosion Science, 2007. 49(3): p. 1045-1055.
19. Randles, J.E.B., Kinetics of Rapid Electrode Reactions. Discussions of the Faraday Society, 1947. 1: p. 11-19.
20. Chen, S.S., et al., Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy. Acs Nano, 2011. 5(2): p. 1321-1327.
21. Yuan, S.J. and S.O. Pehkonen, Surface characterization and corrosion behavior of 70/30 Cu-Ni alloy in pristine and sulfide-containing simulated seawater. Corrosion Science, 2007. 49(3): p. 1276-1304.
Appendix
1. Adams, D.M., et al., Charge transfer on the nanoscale: Current status. Journal of Physical Chemistry B, 2003. 107(28): p. 6668-6697.
2. Branchi, B., F.C. Simeone, and M.A. Rampi, Active and Non-Active Large-Area Metal-Molecules-Metal Junctions. Unimolecular and Supramolecular Electronics Ii: Chemistry and Physics Meet at Metal-Molecule Interfaces, 2012. 313: p. 85-119.
3. Karthauser, S., Control of molecule-based transport for future molecular devices. Journal of Physics-Condensed Matter, 2011. 23(1).
4. Grave, C., et al., Charge transport through oligoarylene self-assembled monolayers: interplay of molecular organization, metal-molecule interactions, and electronic structure. Advanced Functional Materials, 2007. 17(18): p. 3816-3828.
5. Rampi, M.A., O.J.A. Schueller, and G.M. Whitesides, Alkanethiol self-assembled monolayers as the dielectric of capacitors with nanoscale thickness. Applied Physics Letters, 1998. 72(14): p. 1781-1783.
6. Rampi, M.A. and G.M. Whitesides, A versatile experimental approach for understanding electron transport through organic materials. Chemical Physics, 2002. 281(2-3): p. 373-391.
7. Holmlin, R.E., et al., Electron transport through thin organic films in metal-insulator-metal junctions based on self-assembled monolayers. Journal of the American Chemical Society, 2001. 123(21): p. 5075-5085.
8. Querebillo, C.J., et al., Static Conductance of Nitrile-Substituted Oligophenylene and Oligo(phenylene ethynylene) Self-Assembled Mono layers Studied by the Mercury-Drop Method. Journal of Physical Chemistry C, 2013. 117(48): p. 25556-25561.
9. Shaporenko, A., et al., Structural forces in self-assembled monolayers: Terphenyl-substituted alkanethiols on noble metal substrates. Journal of Physical Chemistry B, 2004. 108(38): p. 14462-14469.
10. Shaporenko, A., et al., Odd-even effects in photoemission from terphenyl-substituted alkanethiolate self-assembled monolayers. Langmuir, 2005. 21(10): p. 4370-4375.
11. Shaporenko, A., et al., Balance of structure-building forces in selenium-based self-assembled monolayers. Journal of the American Chemical Society, 2007. 129(8): p. 2232-+.
12. Shaporenko, A., et al., Self-assembled monolayers of alkaneselenolates on (111) gold and silver. Journal of Physical Chemistry B, 2005. 109(9): p. 3898-3906.
13. Shaporenko, A., et al., Quantitative analysis of temperature effects in radiation damage of thiolate-based self-assembled monolayers. Journal of Physics-Condensed Matter, 2006. 18(30): p. S1677-S1689.
14. Sancet, M.P.A., et al., Surface anchored metal-organic frameworks as stimulus responsive antifouling coatings. Biointerphases, 2013. 8.
15. Heinke, L., H. Gliemann, and C. Woll, Systems Chemistry at marginal Interfaces. Nachrichten Aus Der Chemie, 2013. 61(2): p. 116-120.
16. Liu, J.X., et al., Deposition of Metal-Organic Frameworks by Liquid-Phase Epitaxy: The Influence of Substrate Functional Group Density on Film Orientation. Materials, 2012. 5(9): p. 1581-1592.
17. Shekhah, O., et al., Growth Mechanism of Metal-Organic Frameworks: Insights into the Nucleation by Employing a Step-by-Step Route. Angewandte Chemie-International Edition, 2009. 48(27): p. 5038-5041.
18. Fischer, R.A. and C. Woll, Layer-by-Layer Liquid-Phase Epitaxy of Crystalline Coordination Polymers at Surfaces. Angewandte Chemie-International Edition, 2009. 48(34): p. 6205-6208.
19. Shaporenko, A., et al., Self-assembled monolayers of semifluorinated alkaneselenolates on noble metal substrates. Langmuir, 2005. 21(18): p. 8204-8213.
20. Shekhah, O., Layer-by-Layer Method for the Synthesis and Growth of Surface Mounted Metal-Organic Frameworks (SURMOFs). Materials, 2010. 3(2): p. 1302-1315.
21. Higashi, L.S., M. Lundeen, and K. Seff, Empirical Relations between Disulfide Bond Lengths, (N or C)-C-S-S Torsion Angles, and Substituents in Aromatic Disulfides - Crystal and Molecular-Structure of 3,3'-Dihydroxydi-2-Pyridyl Disulfide. Journal of the American Chemical Society, 1978. 100(26): p. 8101-8106.
22. Tachibana, M., et al., Sulfur-gold orbital interactions which determine the structure of alkanethiolate/Au(111) self-assembled monolayer systems. Journal of Physical Chemistry B, 2002. 106(49): p. 12727-12736.
23. Hansen, L.K., The Crystal and Molecular-Structure of 2-Diisopropylamino-4,6-Dimethyl-3,4,6-Triaza-1,6a-Dithiapentalenylium-5-Olate, C11h20n4os2. Acta Chemica Scandinavica Series a-Physical and Inorganic Chemistry, 1983. 37(1): p. 31-39.
24. Duan, F., et al., Control of Photocatalytic Property of Bismuth-Based Semiconductor Photocatalysts. Progress in Chemistry, 2014. 26(1): p. 30-40.
25. Yabuta, H., et al., Microscopic structure and electrical transport property of sputter-deposited amorphous indium-gallium-zinc oxide semiconductor films. 26th Symposium on Plasma Sciences for Materials (Spsm26), 2014. 518.
26. Wu, Z.X., et al., Structure-Property Relationship of Amplified Spontaneous Emission in Organic Semiconductor Materials: TPD, DPABP, and NPB. Journal of Physical Chemistry A, 2013. 117(42): p. 10903-10911.
27. Yoo, H.K., et al., Transport Property of Organic Semiconductor Dependent on Crystalline Ordering. 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (Irmmw-Thz), 2013.
28. Cui, J.L., et al., Microstructure modulation responsible for the improvement in thermoelectric property of a wide-gap AgIn5Se8 semiconductor. Intermetallics, 2012. 31: p. 217-224.