簡易檢索 / 詳目顯示

研究生: 葉偉毓
Wei-Yu Yeh
論文名稱: 氮化鎵發光二極體的設計
Design of GaN-based Light-Emitted Diode
指導教授: 黃惠良
Huey-Liang Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 61
中文關鍵詞: 氮化鎵設計發光二極體
外文關鍵詞: GaN, Design, Light-Emitted Diode
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以氮化鎵為材料的發光二極體在近年來有著蓬勃的發展,而這些元件的活性區材料是氮化銦鎵。氮化物元件在許多地方的應用上有著極大的潛力,像是光學儲存裝置,全彩顯示器等。 但是氮化物元件仍然有許多待解的問題,像是錯位,多量子井系統裡的行為,溫度對整體的影響等等…許多已發表的文獻呈現元件特殊的特性,並且試著去改善以氮化鎵為材料的發光二極體性能。但是他們大多著重在小範圍的現象或是單一變數變化對元件行為的影響。我們將藉由模擬看到元件表現的整體性以及綜合性。
    APSYS是一套主要以二維,有限要素分析以及模組化來模擬半導體的軟體。它包含許多物理的模型而且提供非常有彈性的模組和模擬環境在做現代的半導體元件模擬上。我們藉由這套軟體去檢視任一變數對元件的影響並且做出由裡而外的最佳化設計。將模擬的結果綜合後,我們將得到元件特性的資料以及如何改善它的表現。此外,我們發展出藉由改變極化效應和Shockley-Read-Hall lifetime去使模擬可以近似真實的情況。
    最後,我們結合溫度效應並應用在我們的最佳化設計上,去觀察溫度對元件行為的影響。藉由這一連串的模擬流程,我們對元件特性有更深入的了解,並知道最重要的關鍵點。此外,我們也驗證了模擬應用在實際實驗的可行性。藉由模擬,我們可預先得知其可能的特型與效應。因此,可以省下大量時間以及提供元件設計一個正確的方向。從本研究中,我們相信以氮化鎵為材料的發光二極體,在模擬的幫助下,發展將會更為迅速。


    GaN-based Light - emitting diodes, whose active regions are made of InGaN, have vigorous development in recent years. Nitride devices have great potential for various applications, such as optical data storage and full-color displays. But there are many issues to be solved, like the dislocation, behaviors of multi-quantum wells system, and the effects of temperature. References have shown the characteristics of the nitride devices and the possibilities to improve the performances of GaN-based LED. But only a few phenomena or the effects of single parameter have been discussed. A better understanding of the properties of nitride devices could be gained by simulation.
    APSYS is two-dimensional (2D) software and it uses finite element analysis and modeling software program for semiconductor devices. Its advanced physical models provide a flexible modeling and a simulated environment for modern semiconductor devices. APSYS examines the effects of each parameter and helps the devices to reach their optimization. The results of APSYS simulation provide the information of device’s characteristics and suggest how to improve its performance. By changing polarization and Shockley-Read-Hall lifetime, we develop a method to simulate the real condition.
    Finally, the temperature effect to the optimal design is considered. With a series of simulation processes, we get familiar with GaN-based LED and know the key point. We also test and verify that the APSYS simulation is feasible for application. We can predict the possible characteristics and effects. Therefore, a more precise direction of the device design helps to save lots of time. With the help of the APSYS simulation, the rapid development of GaN-based LED could be expected.

    Contents Chinese Abstract ……………………………………………………..…………Ⅰ English Abstract…………………………………………………………………Ⅱ Acknowledgement………………………………………………………………Ⅲ Contents……………………………………………………………...…………….Ⅳ List of figures……………………………………………………...………………Ⅶ Chap. 1 Introduction………………………………………..…………………...1 1.1 Introduction of APSYS…………………………..………………..3 1.2 Key issues for Nitride-based device…………..…………………3 1.2.1 Dislocation issue………………………….…………………..3 1.2.2 Polarization issue…………………………………………….3 1.2.3 Doping issue…………………………………………………..4 1.2.4 Strain issue……………………………………………………4 1.3 Reference………………………………………………………….6 Chap. 2 Mechanism ……………………………………………………………..8 2.1 Drift and Diffusion…………………………………………………8 2.2 Electron-Hole Recombination……………………………………8 2.2.1 Radiative Recombination……………………………………9 2.2.2 Nonradiative Recombination………………………………9 2.3 Incomplete Ionization of Impurities…………………………….12 2.4 Quantum Well Models…………………………………………..13 2.4.1 Simple Quantum Wells……………………………………..14 2.4.2 Carrier Concentration of Quantum Wells…………………14 2.4.3 Valence Mixing………………………………………………15 2.5 Interband Optical Transition…………………………………….16 2.6 Energy Bands…………………………………………………….16 2.7 Heat Generation………………………………………………….17 2.7.1 Joule Heat……………………………………………………17 2.7.2 Recombination Heat………………………………………..18 2.7.3 Thomson Heat………………………………………………18 2.7.4 Optical Absorption Heat……………………………………19 2.8 Reference………………………………………………………...20 Chap. 3 Simulation issues, methods and process………………………..23 3.1 The foundation of simulation……………………………………23 3.2 The first step of simulation………………………………………26 3.3 The process of simulation……………………………………….27 3.3.1 Optimal Design……………………………………………..29 3.3.2 Polarization and Carrier Lifetime comparison…………..30 3.3.3 Variation of Temperature………………………………….30 3.4 Reference………………………………………………………...31 Chap. 4 Results and Discussion……………………………………………..32 4.1 Optimal Design…………………………………………………..32 4.1.1 Well Width………………………………………………….33 4.1.2 Barrier Width……………………………………………….36 4.1.3 P-Cladding layer and N-Cladding layer………………….40 4.1.4 Buffer Layer………………………………………………42 4.2 Polarization Effect and Carrier Lifetime comparison…………44 4.2.1 Different degrees of Polarization Effect…………………44 4.2.2 Nonradiative and Radiative recombination rate………48 4.3 Temperature variation…………………………………………...50 4-4 Reference………………………………………………………...55 Chap. 5 Conclusion…………………………………………………………….56 List of Figures Fig. 1-1 Band gaps and lattice constants of hexagonal nitride compounds Fig. 3-1 The schema of the LED structure Fig. 3-2 Density of interface polarization charges (dashed) and resulting electrostatic field (solid) for ternary alloys grown on GaN Fig. 3-3 The Plot of the mesh design Fig. 3-4 Band diagram and Electric field (a) Without polarization effect, (b) With polarization effect , the operating voltage is 3.2V Fig. 3-5 (a). Electron concentration (b) Hole concentration. Operating voltage is 3.2V Fig. 4-1 (a) The current vs Quantum well number (b) Internal quantum efficiency vs Quantum well number. The operating voltage is 3.4V Fig. 4-2 Well width comparison (a) I-V graph (b) Power vs Current (c) Internal quantum efficiency vs Current. This is the three-quantum-well system and the operating voltage is 3V to 4V Fig. 4-3 Electron and hole concentration. (a) Well width is 2nm (b) Well width is 5nm. Operating voltage is 3.2V Fig. 4-4 Spontaneous recombination rate vs wavelength (a) Well width is 2nm (b) Well width is 5nm. Operating voltage is from 3V to 4V (The lowest is 3V, the highest is 4V) Fig. 4-5 Barrier width comparison (a) I-V graph (b) Power vs Current (c) Internal quantum efficiency vs Current. This is 3Qws system and the operating voltage is from 3V to 4V. Fig. 4-6 Spontaneous recombination rate vs wavelength (barrier width comparison) (a) 2nm (b) 5nm (c) 8nm (d) 10nm (e) 15nm. Operating voltage is from 3V to 4V (The lowest is 3V, the highest is 4V) Fig. 4-7 P- Cladding layer comparison (a) I-V graph (b) Power vs Current (c) Internal quantum efficiency vs Current. This is 3Qws system and the operating voltage is from 3V to 4V Fig. 4-8 N-cladding layer comparison (a) I-V graph (b) Power vs Current (c) Internal quantum efficiency vs Current. This is three-quantum-well system and the operating voltage is from 3V to 4V Fig. 4-9 P-Buffer layer comparison (a) I-V graph (b) Power vs Current (c) Internal quantum efficiency vs Current. This is 3Qws system and the operating voltage is from 3V to 4V Fig. 4-10 The optimal structure of GaN-based LED (3Qws) Fig. 4-11 Polarization comparison (SRH time in wells are 5ns and others are 1ns) (a) I-V graph (b) Internal quantum efficiency vs current .The operating voltage is 3V~4V. Fig. 4-12 Polarization comparison (All SRH time are 1ns) (a) I-V graph (b) Internal quantum efficiency vs current .The operating voltage is 3V~4V Fig. 4-13 Spontaneous recombination rate vs wavelength (a) Without polarization (all SRH carrier lifetimes are 1ns) (b) With polarization (all SRH carrier lifetimes are 1ns) (c) Without polarization (standard setting well:5ns ;others 1ns) (d) With polarization (standard setting well:5ns ;others 1ns). The lowest curve is 3V, the highest curve is 4V. Fig. 4-14 Three quantum wells system. Radiative recombination, Auger recombination rate, and Shockley-Read-Hall recombination rate (a) Polarization degree 0.2 (b) Polarization degree 0.4 (c) Polarization degree 0.6 (d) Polarization degree 1.The operating voltage is 3.2V and 0.01~0.012 is well width, the barrier width is 10nm. The system is 3Qws. Fig. 4-15 Three quantum wells system. Radiative recombination rate, Auger recombination rate, and Shockley-Read-Hall recombination rate. The operating voltage is 3.7V and polarization effect is 0.2. Fig. 4-16 Operating temperature comparison (a) I-V graph (b) Power vs Current (c) Internal quantum efficiency vs Current. This is the three-quantum-well system and the operating voltage is from 3V to 4V Fig. 4-17 Three quantum wells system. Radiative recombination rate, Auger recombination rate, and Shockley-Read-Hall recombination rate. (a) 280K (b) 340K The operating voltage is 3.2V and the degree of polarization effect is 0.4. Fig. 4-18 Spontaneous recombination rate vs wavelength (a) 300K (b) 400K. The lowest curve is 3V, and the highest curve is 4V Fig. 4-19 Distribution of heat at different operating voltage

    [1] S. Nakamura, s. Pearton, and G, Fasol, The blue Laser Diode. Berlin: Spring-Verlag, 2000
    [2] Joachim Piprek, “ Semiconductor Optoelectronic Devices” Introduction to physics and Simulation,p188.1997
    [3] S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light-Emitting Diodes, Taylor & Francis, London, 2000.
    [4] Http://www.crosslight.com/Product_Overview/prod_overv.html#APSYS
    [5] F. Bernardini, V. Fiorentini, and D. Vanderbily, Spontaneous polarization and piezoelectric constants of Ⅲ-Ⅴ nitrides, Phys. Rv. B, vol. 56, pp. R10024-R10027, 1997
    [6] W. Walukiewicz, Physica B, Vol. 302-303, 123-134 (2001)
    [7] Tetsuya Yamamoto, and Hiroshi Katayama-Youshida, Jpn. J. Appl. Phys., Vol. 36, L180-L183 (1997)
    [8] H. Katayama-Youshida, and T. Yamamoto, Phys. Stat. Sol. (b), Vol. 202, 763 (1997)
    [9] Tetsuya Yamamoto, and Hiroshi Katayama-Youshida, Journal of Crystal Growth Vol. 189/190, 532-536 (1998)
    [10] G. Kipshidze, V. Kuryatkov, B. Borisov, Yu. Kuryavtsev, R. Asomoza, S. Nikishin, and H. Temkin, Appl. Phys. Lett., Vol. 80, No. 16 2910 (2002)
    [11] T. Yamamoto, Phys. Stat. Sol. (a), Vol. 193, No. 3, 423-433 (2002)
    [12] Peter Kozodoy, Yulia P Smorchkova, Monica Hansen, Huili Xing, Steven P. Denbears and Umesh K. Mishra, Appl, Lett., Vol. 75, No. 16, 2444 (1999)
    [13] G. C. Osbourn, “InxGa1-xAs-InyGa1-yAs strained-layer superlattices : A proposal for useful, new electronic materials, “Phys. Rev. B 27, 5126-5128 (1983)
    [14] G.C. Osbourn, “InAsSb strained-later superlattices for long wavelength detector applications,” J.Vac. Sci. Technol. B2, 176-178 (1984)
    [15] S. Jain, M. Willander, and R. V. Overstraeten, Compound Semiconductors, Strained Layers, and Devices. Dordrecht : Kluwer, 2000.
    [16] IEEE Jiurnal of Quantum Electronics, Special Issue on Strained-Layer Optoelectronic Materials and Devices, February 1994
    [17] E. Yablonovitch, “band structure engineering of semiconductor lasers for optical communications, “ J. Lightwave Technol. 6, 1292-1299 (1988)
    [18] T. P. Persall, Volume Editor, “Strained-layer superlattices: Physics, “ in R. K. Willardson and A. C. Beer, Eds., Semiconductors and Semimetals, Vol. 32, Academic, New York, 1990
    [19] P. S. Zory, Quantum Well Lasers, Academic, New York, 1993.
    [20] Ioffe Institute, St. Petersburg, Russia, Web Archive on Semiconductor Data, available at http://www.ioffe.rssi.ru/SVA/
    [21] Y. Suematsu and A.R.Adams, eds.,Handbook of Semiconductor Lasers and Photonic Integrated Circuits. London: Chapman & Hall, 1994
    [22] G. W. Charache, P. F. Baldasaro, L. R. Danielson, D. M. DePoy, M. J. Freeman, C. A. Wang, H. K. Choi, D. z. Garbuzov, R. U. Martinelli, V. Khalfin, S. Saroop, J. M. Borrego, and R. J. Gutmann, InGaAsSb thermophotovoltaic diode : Physics evaluation, J. Appl. Phys, vol. 85, pp.2447-2252, 1999
    [23] E. Wintner and E. P. Ippen, Nonlinear carrier dynamics in InGaAsP compounds, Appl. Phys. Lett., vol.44, pp. 999-1001, 1984
    [24] G. E. Shtengel, D. A. Ackermann, P. A. Morton, E. J. Flynn, and M. S. Hybertsen, Impedance-corrected carrier lifetime measurements in semiconductor lasers, Appl. Phys. Lett., vol. 67, pp. 1506-1508, 1995
    [25] M. C. Wang, K. Kash, C. Zah, R. Bhat, and S. L. Chuang, Measurement of nonradiative auger and radiative recombination rates in strained-layer quantum-well systems, Appl, Phys. Lett., vol. 62, pp. 166-168, 1993
    [26] G. Agrawal and N. Dutta, Semiconductor Lasers. New York : van Nostrand Reinhold, 1986
    [27] J. F. Muth, J. H. Lee, I K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. Denbears, Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements, Appl. Phys. Lett., vol. 71, pp. 2572-2574, 1997
    [28] K. W. boer, Survey of Semiconductor Physics, vl. I. New York:Van Nostrand Reinhold, 1990
    [29] W. Shockley and J. T. W. Read, Statistics of the recombinations of holes and electrons, Phys. Rev., vol. 87, pp. 835-842, 1952
    [30] R. N. Hall, Electron-hole recombination in germanium, Phys. Rev., vol. 87, p. 387, 1952
    [31] S. M. Sze, “Physics of semiconductor devices”, 2nd ed. John Wiley & Sons (1981).
    [32] D. I. Blokhintsev, “Quantum mechanics”, D. Reidel Publishing Company,
    Dordrecht-Holland (1964). Corzine
    [33] S. L. Chuang, “Efficient band-structure calculation of strained quantum-wells,” Phys. Rev. B, 43, 9649-9661 (1991).
    [34] G. Fuchs, C. Schiedel, A. Hangleiter, V. Harle, and F. Scholz, “Auger recombination in strained and unstrained InGaAs/InGaAsP multiple quantum well lasers,” Appl. Phys. Lett., 62, 396-398 (1993).
    [35] S. Colak, R. Eppenga, and M.F.H. Schuurmans, “Band mixing effects on quantum well gain.” IEEE J. PilkuhnQuantum Well Electron., QE-23, 960-967 (1987).
    [36] R. Eppenga, M.F.H. Schuurmans, and S. Colak, “New k.p thoery for
    GaAs/Ga1−xAlxAs-type quantum wells”, Phys. Rev., 36, 1554-1564 (1987).
    [37] C. Wetzel, T. Takeuchi, S. Yamaguchi, H. Katoh, H. Amano, and I. Akasaki, Optical band gap in GaInN on GaN by photoreflection spectroscopy, Appl. Phys. Lett., vol. 73,PP. 1994-1996, 1998
    [38] S. R. Lee, A. F. Wright, M. H. Crawford, G. A. Petersen, J. Han, and R. M. Biefeld, The band-gap bpwing of AlxGa1-xN alloys, Appl. Phys. Lett., vol. 74, pp. 3344-3346, 1999
    [39] S.-H. Wei and A. Zunger, Valence band spittings and band offsets of AIN, GaN, and InN, Appl. Phys. Lett., vol. 69, pp. 2719-2721, 1996
    [40] A. C. Abare, Growth and Fabrication of Nitride-Based Distributioed Feedback Laser Diodes. PhD thesis, University of California at Santa Barbara, 2000
    [41] S. H. Park and S. L. Chuang, Many-body optical gain of wurtzite GaN-based quantum-well lasers and comparison with experiment, Appl, Phys. Lett., vol. 72, pp. 287-289, 1998
    [42] J. Piprek, Semiconductor Optoelectronic Devices –Introduction to Physics and Simulation, Academic Press, San Diego, 2003.
    [43] J. Bai a) T. Wang , S. Sakai “Study of the strain relaxation in InGaN/GaN multiple quantum well structures” JOURNAL OF APPLIED PHYSICS VOLUME 90, NUMBER 4 15 AUGUST 2001
    [44] W. Shockley and J. T. W. Read, Statistics of the recombinations of holes and electrons, Phys. Rev., vol. 87, pp. 835-842, 1952
    [45] R. N. Hall, Electron-hole recombination in germanium, Phys. Rev., vol. 87, p. 387, 1952
    [46] V. E. Bougrov and A. S. Zubrilova) J. Appl. Phys. 81 (7), 1 April 1997
    [47] Cheul-Ro Leea, *, Sung-Jin Sona, Kyeong-Won Seola, Jeong-Mo Yeona,
    Haeng-Keun Ahna, Yong-Jo Parkb ,Journal of Crystal Growth 226 (2001) 215–222
    [48] Joachim Piprek, Tom Katona, Steven P. DenBaars, and Simon Li, Light-Emitting Diodes: Research, Manufacturing and Applications VIII, SPIE Proc. 5366-59 (2004)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE