簡易檢索 / 詳目顯示

研究生: 王粲琁
論文名稱: 氮氧化鈦電阻式記憶體的研究與探討
Investigation of Titanium Oxynitride and its Application on Resistive Random Access Memory
指導教授: 闕郁倫
口試委員: 曾俊元
蔡銘進
謝光宇
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 64
中文關鍵詞: 氮氧化鈦電阻式記憶體
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電阻式記憶體是下一世代非揮發性記憶體的重要研究領域,它具有快速的處理速度以及良好的記憶穩定性,其簡單的結構也是具有競爭力的一有利因素。然而電阻式記憶體仍具有一些問題需要被解決,例如在實際應用結構上產生的漏電路線問題,以及傳導機制的進一步確認與探討。本研究著重於解決漏電路線問題,嘗試開發出一具有非線性電阻的記憶體。
    本研究探討了氮氧化鈦材料在電阻式記憶體領域上的應用,透過不同的厚度與成分的調整,以及不同電極材料的搭配,得到具有非線性電阻的電阻式記憶體元件,具有十分大的應用潛力。
    使用穿透式電子顯微鏡與元素化學成分分析儀,對氮氧化鈦薄膜特性進行研究以進一步得知造成非線性電阻的原因,並透過電性分析推得此電阻式記憶體的傳導機制。


    誌謝 ii 摘要 iv Abstract v Contents vi List of Figures viii Chapter 1 Introduction 1 Chapter 2 Literature Review 2 2.1 Non-volatile Memory 2 2.2 ReRAM 4 2.2.1 Introduction of ReRAM 4 2.2.2 The Mechanisms of ReRAM 8 2.2.3 Material Choices of ReRAM 13 2.2.4 Sneak Path Problem 15 2.3 Motivation of thesis 22 Chapter 3 Experimental Design 23 3.1 Experimental Flow 23 3.2 Material Analysis 26 3.2.1 Electrical Measurement 26 3.2.2 Thickness Measurement 27 3.2.3 Bonding Analysis 29 3.2.4 Electron Probe Microanalyzer 30 3.2.5 Transmission Electron Microscopy 31 Chapter 4 Results and Discussion 33 4.1 Multi-step Sputtered Titanium Oxynitride 33 4.2 Titanium oxynitride with different oxygen concentration 40 4.3 Titanium oxynitride with different nitrogen concentration 48 4.4 Conducting Mechanism and the Origin of Non-linear Behavior 53 Chapter 5 Conclusion 58 Future Prospect 59 References 61

    1. Waser, R., et al., Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges. Advanced Materials, 2009. 21(25-26): p. 2632-2663.
    2. Arimoto, Y. and H. Ishiwara, Current status of ferroelectric randomm-access memory. Mrs Bulletin, 2004. 29(11): p. 823-828.
    3. Sawa, A., Resistive switching in transition metal oxides. Materials Today, 2008. 11(6): p. 28-36.
    4. Chua, L.O., Memristor - Missing Circuit Element. Ieee Transactions on Circuit Theory, 1971. Ct18(5): p. 507-&.
    5. Strukov, D.B., et al., The missing memristor found. Nature, 2008. 453(7191): p. 80-83.
    6. Nauenheim, C., et al., Investigation of the electroforming process in resistively switching TiO2 nanocrosspoint junctions. Applied Physics Letters, 2010. 96(12).
    7. Yang, J.J.S., D.B. Strukov, and D.R. Stewart, Memristive devices for computing. Nature Nanotechnology, 2013. 8(1): p. 13-24.
    8. Lee, M.J., et al., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nature Materials, 2011. 10(8): p. 625-630.
    9. Lee, H.Y., et al., Evidence and solution of Over-RESET Problem for HfO(X) Based Resistive Memory with Sub-ns Switching Speed and High Endurance. 2010 International Electron Devices Meeting - Technical Digest, 2010.
    10. Kwon, D.H., et al., Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotechnology, 2010. 5(2): p. 148-153.
    11. Oka, K., et al., Spatial Nonuniformity in Resistive-Switching Memory Effects of NiO. Journal of the American Chemical Society, 2011. 133(32): p. 12482-12485.
    12. Waser, R. and M. Aono, Nanoionics-based resistive switching memories. Nature Materials, 2007. 6(11): p. 833-840.
    13. Meyer, R., et al., Oxide Dual-Layer Memory Element for Scalable Non-Volatile Cross-Point Memory Technology. 2008 9th Annual Non-Volatile Memory Technology Symposium, Proceedings, 2008: p. 54-58.
    14. Yang, Y.C., et al., Observation of conducting filament growth in nanoscale resistive memories. Nature Communications, 2012. 3.
    15. Strachan, J.P., et al., Direct Identification of the Conducting Channels in a Functioning Memristive Device. Advanced Materials, 2010. 22(32): p. 3573-+.
    16. Duraisamy, N., et al., Fabrication of TiO2 thin film memristor device using electrohydrodynamic inkjet printing. Thin Solid Films, 2012. 520(15): p. 5070-5074.
    17. Linn, E., et al., Complementary resistive switches for passive nanocrossbar memories. Nature Materials, 2010. 9(5): p. 403-406.
    18. Wu, M.C., et al., Low-Power and Highly Reliable Multilevel Operation in ZrO2 1T1R RRAM. Ieee Electron Device Letters, 2011. 32(8): p. 1026-1028.
    19. Liu, Z.J., J.Y. Gan, and T.R. Yew, ZnO-based one diode-one resistor device structure for crossbar memory applications. Applied Physics Letters, 2012. 100(15).
    20. Yang, J.J., et al., Engineering nonlinearity into memristors for passive crossbar applications. Applied Physics Letters, 2012. 100(11).
    21. Bae, Y.C., et al., Oxygen Ion Drift-Induced Complementary Resistive Switching in Homo TiOx/TiOy/TiOx and Hetero TiOx/TiON/TiOx Triple Multilayer Frameworks. Advanced Functional Materials, 2012. 22(4): p. 709-716.
    22. Meyer, E., Atomic Force Microscopy. Progress in Surface Science, 1992. 41(1): p. 3-49.
    23. Binnig, G., C.F. Quate, and C. Gerber, Atomic Force Microscope. Physical Review Letters, 1986. 56(9): p. 930-933.
    24. Kraut, E.A., et al., Semiconductor Core-Level to Valence-Band Maximum Binding-Energy Differences - Precise Determination by X-Ray Photoelectron-Spectroscopy. Physical Review B, 1983. 28(4): p. 1965-1977.
    25.http://serc.carleton.edu/research_education/geochemsheets/electroninteractions.html
    26. Chopra, N.G., et al., Boron-Nitride Nanotubes. Science, 1995. 269(5226): p. 966-967.
    27. Yu, S.M. and H.S.P. Wong, A Phenomenological Model for the Reset Mechanism of Metal Oxide RRAM. Ieee Electron Device Letters, 2010. 31(12): p. 1455-1457.
    28. Shima, H., et al., Voltage polarity dependent low-power and high-speed resistance switching in CoO resistance random access memory with Ta electrode. Applied Physics Letters, 2008. 93(11).
    29. Huang, R., et al., Resistive switching of silicon-rich-oxide featuring high compatibility with CMOS technology for 3D stackable and embedded applications. Applied Physics a-Materials Science & Processing, 2011. 102(4): p. 927-931.
    30. Ismail, I.M., et al., XPS and RBS investigation of TiNxOy films prepared by vacuum arc discharge. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2012. 271: p. 102-106.
    31. Bertoti, I., et al., Surface Characterization of Plasma-Nitrided Titanium - an Xps Study. Applied Surface Science, 1995. 84(4): p. 357-371.
    32. Trenczek-Zajac, A., et al., Structural and electrical properties of magnetron sputtered Ti(ON) thin films: The case of TiN doped in situ with oxygen. Journal of Power Sources, 2009. 194(1): p. 93-103.
    33. Suni, I., et al., Thermal-Oxidation of Reactively Sputtered Titanium Nitride and Hafnium Nitride Films. Journal of the Electrochemical Society, 1983. 130(5): p. 1210-1214.
    34. Fujimoto, M., et al., TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching. Applied Physics Letters, 2006. 89(22)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE