簡易檢索 / 詳目顯示

研究生: 温秉彝
Wen, Ping-Yi
論文名稱: 利用超導量子位元實現量子光學
Quantum Optics with Superconducting Qubits
指導教授: 許耀銓
Hoi, Io-Chun
口試委員: 余怡德
Yu, Ite-A.
陳正中
Chen, Jeng-Chung
陳啟東
Chen, Chii-Dong
褚志崧
Chuu, Chih-Sung
郭華丞
Kuo, Watson
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 107
中文關鍵詞: 量子光學超導量子位元約瑟芬接合四光子過程超導人造原子虛光子真空漲落光媒介交互作用四波混合transmon
外文關鍵詞: quantumoptics, superconductingqubit, Josephsonjunction, fourphotonprocess, superconductingartificialatom, virtualphoton, vacuumfluctuation, photonmediatedinteraction, fourwavemixing, transmon
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文利用超導量子位元(superconducting transmon qubit)實現量子光學。
    首先我們利用強且與量子位元共振的驅動光照在置於一微傳輸線末端的單 顆超導量子位元上,使其產生莫洛三重態(Mollow triplet),再利用微弱的探測光 探測量子位元的狀態。我們發現在莫洛三重態(Mollow triplet)的頻率之間,反 射的探測光有 7%的放大現象。一般來說,在光學或微波領域要產生光放大的機 制,必須有很強的驅動光使材料產生居量反轉,進而產生受激放射。但這裡的光 放大機制並非由於居量反轉,也非描述於裸量子位元(bare qubit state)基底,更 非描述於綴飾態(dressed state)基底,而是利用四光子過程(four-photon process) 機制,將強驅動光的能量轉換成弱探測光的能量。我們的元件可以在量子資訊過 程和量子極限量測有所應用。由於我們的元件只由單一的二能階量子位元組成, 可以被視為極限微型化的四波混合參數放大器。
    再來我們將兩顆超導量子位元鑲在半開放的一維傳輸線上,一個量子位元置 於傳輸線的末端,永遠處在微波電場的腹點,另一個量子位元遠離傳輸線末端的 鏡子,我們可以調控該量子位元處於微波電場的腹點或節點,故可以調控量子位 元與光場交互作用的大小,進而改變量子位元處於環境之真空漲落(vacuum fluctuation)。我們實現量子位元間透過真實光子與虛光子的光媒介交互作用 (photon-mediated interaction)。一方面,由於透過真實光子的交互作用,兩個量 子位元的特徵態會重新組合成新的特徵態,稱為亮態(bright state)與暗態(dark state),或稱超幅射(superradiant)與次幅射(subradiant)。另一方面,透過虛光 子的交互作用可以觀察到能譜分裂的現象。由於破壞性干涉效應,我們觀測到兩 顆量子位元之間的不去相干交互作用,即使一顆量子位元不會鬆弛,還是能透過 虛光子經由傳輸線與另外一顆量子位元交換激發態。最後在我們的系統觀察到亮 態與暗態(超幅射與次輻射)的對稱轉換。


    In this thesis we study quantum optics with superconducting qubit (transmon). Firstly, we demonstrate reflective amplification of a weak probe, using a resonantly pumped superconducting qubit, placed at the end of a transmission line. When driv- ing the qubit strongly on resonance such that a Mollow triplet appears, we observe a 7% amplitude gain for a weak probe at frequencies in-between Mollow triplet. In general, amplification of optical or microwave fields is often achieved by strongly driv- ing a medium to induce population inversion such that a weak probe can be amplified through stimulated emission. This amplification is not due to population inversion, neither in the bare qubit basis nor in the dressed-state basis, but instead results from a four-photon process that converts energy from the strong drive to the weak probe. The device demonstrated in this thesis may have applications in quantum information processing and quantum-limited measurements. Since it consists of a single two-level artificial atom, it can be viewed as the ultimate miniaturization of a four-wave-mixing parametric amplifier.
    Secondly, we embed two transmons in a half open transmission line. One qubit sits at the end of transmission line, where is voltage antinode, the other qubit is far away from the mirror, which can be tuned in and out of the node of the field, we can change the spatial structure of modes of the vacuum fluctuations, so that one can tune the coupling strength between the qubit and field. We demonstrate both real and virtual photon- mediated interaction between this two superconducting qubits. On the one hand, due to real photon-mediated interaction, the eigenstates of two transmon qubits recombined into new eigenstates, which is bright (superradiant) and (subradiant) dark state. On the other hand, virtual photon-mediated interaction exhibits the splitting in our system. Due to the destructive interference effect, one can see the decoherence-free interaction between two qubits in our system, i.e. even if the qubit can not relax into the transmis- sion, one can still exchange excitations via virtual photons in the transmission line to the other qubit. We also demonstrate symmetry transition of the bright state (superradiant) and dark state (sub radiant).

    List of appended publications iii Contents vi List of Tables vii List of Figures x 1 Introduction 1 1.1 Quantum bit(Qubit) 2 1.2 Josephson junction (JJ) and superconducting quantum interference device(SQUID) 3 1.3 Quantum vacuum fluctuations 6 1.4 Quantum optics with superconducting circuits 8 2 Theoretical background 11 2.1 Superconducting artificial atom 11 2.1.1 Constructing a superconducting artificial atom 13 2.1.2 The single Cooper pair box (SCB) 17 2.1.3 The transom 19 2.2 1D coplanar waveguide transmission line 21 2.3 Interaction between a transmon qubit and electromagnetic fields 24 2.3.1 Dressed states and Mollow triplet 25 2.3.2 A transom at the end of a 1D transmission line 27 2.3.3 Autler-Townes splitting (ATS) 31 2.3.4 A transmon far from the end of the transmission line 34 3 Experimental setup and measurement techniques 39 3.1 Fabrication and samples 39 3.2 Microwave components and measurement setup 42 4 Reflective amplification without population inversion from a strongly driven superconducting qubit 47 4.1 Introduction 48 4.2 Experimental setup and device description 49 4.3 Spectroscopy of the transom qubit 51 4.4 Amplification within the Mollow triplet 53 4.5 Theory 56 4.6 Summary 57 5 Qubits interaction via virtual photons 59 5.1 Introduction 60 5.2 Experimental setup and device description 60 5.3 Spectroscopy of the two transom qubits 62 5.4 Qubits interaction via virtual photons 65 5.5 Symmetric transition for the bright and dark state 65 5.6 Summary 67 6 Conclusion and future works 70 6.1 Conclusion 70 6.2 Futureworks 70 Bibliography 72 Appendix A Abbreviations and Symbols 87 Appendix B Appended paper I 91 Supplementary 98 Appendix C Appended paper II 100 Acknowledgements 106

    [1] A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Yu. A. Pashkin, Y. Naka- mura, and J. S. Tsai. Electromagnetically induced transparency on a single artificial atom. Physical Review Letters, 104(19), may 2010.
    [2] A. A. Abdumalikov, O. V. Astafiev, Yu. A. Pashkin, Y. Nakamura, and J. S. Tsai. Dynamics of coherent and incoherent emission from an artificial atom in a 1d space. Physical Review Letters, 107(4), jul 2011.
    [3] S Ashhab, J R Johansson, A M Zagoskin, and Franco Nori. Single-artificial- atom lasing using a voltage-biased superconducting charge qubit. New Jour- nal of Physics, 11(2):023030, feb 2009.
    [4] O. Astafiev, K. Inomata, A. O. Niskanen, T. Yamamoto, Yu. A. Pashkin, Y. Nakamura, and J. S. Tsai. Single artificial-atom lasing. Nature, 449(7162):588–590, oct 2007.
    [5] O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Yu. A. Pashkin, T. Ya- mamoto, K. Inomata, Y. Nakamura, and J. S. Tsai. Resonance fluorescence of a single artificial atom. Science, 327(5967):840–843, feb 2010.
    [6] S. H. Autler and C. H. Townes. Stark effect in rapidly varying fields. Physical Review, 100(2):703–722, oct 1955.
    [7] M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Goppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff. Measurement of autler-townes and mollow transitions in a strongly driven superconducting qubit. Physical Review Letters, 102(24), jun 2009.
    [8] H. A. Bethe. The electromagnetic shift of energy levels. Physical Review, 1947.
    [9] K Bladh, T Duty, D Gunnarsson, and P Delsing. The single cooper-pair box as a charge qubit. New Journal of Physics, 7:180–180, aug 2005.
    [10] J. Bourassa, J. M. Gambetta, A. A. Abdumalikov, O. Astafiev, Y. Naka- mura, and A. Blais. Ultrastrong coupling regime of cavity QED with phase- biased flux qubits. Physical Review A, 80(3), sep 2009.
    [11] R. W. Boyd. Nonlinear Optics. Elsevier, Amsterdam, 2008.
    [12] M. Buttiker. Zero-current persistent potential drop across small-capacitance
    josephson junctions. Physical Review B, 36(7):3548–3555, sep 1987.
    [13] H. B. Callen and T. A. Welton. Irreversibility and generalized noise. Physical
    Review 83, 34, 1951.
    [14] R. L. Carman, R. Y. Chiao, and P. L. Kelley. Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification. Physical Review Letters, 17(26):1281–1283, dec 1966.
    [15] H. B. G. Casimir. On the attraction between two perfectly conducting plates. Proceedings of the Royal Netherlands Academy of Arts and Sciences 51, 793, 1948.
    [16] Zhen Chen, Yimin Wang, Tiefu Li, Lin Tian, Yueyin Qiu, Kunihiro Ino- mata, Fumiki Yoshihara, Siyuan Han, Franco Nori, J. S. Tsai, and J. Q. You. Single-photon-driven high-order sideband transitions in an ultrastrongly cou- pled circuit-quantum-electrodynamics system. Physical Review A, 96(1), jul 2017.
    [17] Shao chi Lee. Observation of autler-townes splitting in a superconducting artificial atom situated at the end of transmission line. Master’s thesis, National Tsing Hua University, 2017.
    [18] A. A. Clerk, M. H. Devoret, S. M. Girvin, Florian Marquardt, and R. J. Schoelkopf. Introduction to quantum noise, measurement, and amplification. Reviews of Modern Physics, 82(2):1155–1208, apr 2010.
    [19] R. G. DeVoe and R. G. Brewer. Observation of superradiant and subra- diant spontaneous emission of two trapped ions. Physical Review Letters, 76(12):2049–2052, mar 1996.
    [20] M. H. Devoret. Linneaus summer school in quantum engineering. In quantum engineering, 2010.
    [21] M. H. Devoret and R. J. Schoelkopf. Superconducting circuits for quantum information: An outlook. Science, 339(6124):1169–1174, mar 2013.
    [22] P. A. M. Dirac. The quantum theory of the emission and absorption of radiation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 114(767):243–265, mar 1927.
    [23] T. Duty, D. Gunnarsson, K. Bladh, and P. Delsing. Coherent dynamics of a josephson charge qubit. Physical Review B, 69(14), apr 2004.
    [24] Yao-Lung L. Fang and Harold U. Baranger. Waveguide QED: Power spectra and correlations of two photons scattered off multiple distant qubits and a mirror. Physical Review A, 91(5), may 2015.
    [25] A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff. Implemen- tation of a toffoli gate with superconducting circuits. Nature, 481(7380):170– 172, dec 2012.
    [26] S. Filipp, M. Goppl, J. M. Fink, M. Baur, R. Bianchetti, L. Steffen, and A. Wallraff. Multimode mediated qubit-qubit coupling and dark-state sym- metries in circuit quantum electrodynamics. Physical Review A, 83(6), jun 2011.
    [27] P. Forn-Diaz, J. J. Garcia-Ripoll, B. Peropadre, J.-L. Orgiazzi, M. A. Yur- talan, R. Belyansky, C. M. Wilson, and A. Lupascu. Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonper- turbative regime. Nature Physics, 13(1):39–43, oct 2017.
    [28] A. Fragner, M. Goppl, J. M. Fink, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff. Resolving vacuum fluctuations in an electrical circuit by measuring the lamb shift. Science, 322(5906):1357–1360, nov 2008.
    [29] H. Friedmann and A. D. Wilson-Gordon. Dispersion profiles of the ab- sorptive response of a two-level system interacting with two intense fields. Physical Review A, 36(3):1333–1341, aug 1987.
    [30] C. W. Gardiner and P. Zoller. Quantum Noise, 3rd ed. Springer, 2004.
    [31] C. C. Gerry and P. L. Knight. Introductory Quantum Optics. Cambridge
    University Press, 2005.
    [32] Xiu Gu, Anton Frisk Kockum, Adam Miranowicz, Yu xi Liu, and Franco Nori. Microwave photonics with superconducting quantum circuits. Physics Reports, 718-719:1–102, nov 2017.
    [33] M. V. Gustafsson, T. Aref, A. F. Kockum, M. K. Ekstrom, G. Johansson, and P. Delsing. Propagating phonons coupled to an artificial atom. Science, 346(6206):207–211, sep 2014.
    [34] S. W. HAWKING. Black hole explosions? Nature, 248(5443):30–31, mar 1974.
    [35] Max Hofheinz, H. Wang, M. Ansmann, Radoslaw C. Bialczak, Erik Lucero, M. Neeley, A. D. O'Connell, D. Sank, J. Wenner, John M. Martinis, and A. N. Cleland. Synthesizing arbitrary quantum states in a superconducting resonator. Nature, 459(7246):546–549, may 2009.
    [36] I.-C. Hoi, A. F. Kockum, L. Tornberg, A. Pourkabirian, G. Johansson, P. Delsing, and C. M. Wilson. Probing the quantum vacuum with an ar- tificial atom in front of a mirror. Nature Physics, 11(12):1045–1049, sep 2015.
    [37] Io Chun Hoi. Quantum optics with propagating microwaves in superconduct- ing circuits. PhD thesis, Chalmers University of Technology, 2013.
    [38] Io-Chun Hoi, Anton F. Kockum, Tauno Palomaki, Thomas M. Stace, Bixuan Fan, Lars Tornberg, Sankar R. Sathyamoorthy, Goran Johansson, Per Dels- ing, and C. M. Wilson. Giant cross-kerr effect for propagating microwaves induced by an artificial atom. Physical Review Letters, 111(5), aug 2013.
    [39] Io-Chun Hoi, C M Wilson, Goran Johansson, Joel Lindkvist, Borja Per- opadre, Tauno Palomaki, and Per Delsing. Microwave quantum optics with an artificial atom in one-dimensional open space. New Journal of Physics, 15(2):025011, feb 2013.
    [40] Io-Chun Hoi, C. M. Wilson, Goran Johansson, Tauno Palomaki, Borja Per- opadre, and Per Delsing. Demonstration of a single-photon router in the microwave regime. Physical Review Letters, 107(7), aug 2011.
    [41] Jonathan D. Hood, Akihisa Goban, Ana Asenjo-Garcia, Mingwu Lu, Su- Peng Yu, Darrick E. Chang, and H. J. Kimble. Atom–atom interactions around the band edge of a photonic crystal waveguide. Proceedings of the National Academy of Sciences, 113(38):10507–10512, aug 2016.
    [42] Hou Ian, Yu xi Liu, and Franco Nori. Tunable electromagnetically induced transparency and absorption with dressed superconducting qubits. Physical Review A, 81(6), jun 2010.
    [43] R. C. Jaklevic, John Lambe, A. H. Silver, and J. E. Mercereau. Quan- tum interference effects in josephson tunneling. Physical Review Letters, 12(7):159–160, feb 1964.
    [44] Hossein Javadi. Are radiation modes in a vacuum (that cause the casimir effect, for example) vacuum fluctuations and quantum harmonic oscillators the same? Technical report, Shahid Beheshti University, 2017.
    [45] G. Johansson and T. Bauch. A lecture in quantum informatics. In Quantized electromagnetic field and the Jaynes-Cummings Hamiltonian, 2008.
    [46] G. Johansson and T. Bauch. Decoherence and the bloch equations. In Alecture in Quantum Informatics, 2012.[47] J. R. Johansson, G. Johansson, C. M. Wilson, and Franco Nori. Dynamical casimir effect in superconducting microwave circuits. Physical Review A, 82(5), nov 2010.
    [48] J. Robert Johansson. In Quantum vacuum amplification in superconducting circuits, 2012.
    [49] J.R. Johansson, P.D. Nation, and Franco Nori. Qutip 2: A python framework for the dynamics of open quantum systems. Computer Physics Communi- cations, 184(4):1234–1240, apr 2013.
    [50] Jaewoo Joo, Jerome Bourassa, Alexandre Blais, and Barry C. Sanders. Elec- tromagnetically induced transparency with amplification in superconducting circuits. Physical Review Letters, 105(7), aug 2010.
    [51] B. D. JOSEPHSON. Coupled superconductors. Reviews of Modern Physics, 36(1):216–220, jan 1964.
    [52] B.D. Josephson. Possible new effects in superconductive tunnelling. Physics Letters, 1(7):251–253, jul 1962.
    [53] G. Khitrova, J. F. Valley, and H. M. Gibbs. Gain-feedback approach to optical instabilities in sodium vapor. Physical Review Letters, 60(12):1126– 1129, mar 1988.
    [54] Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Ma- jer, Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. Charge-insensitive qubit design derived from the cooper pair box. Physical Review A, 76(4), oct 2007.
    [55] Anton Frisk Kockum, Goran Johansson, and Franco Nori. Decoherence-free interaction between giant atoms in waveguide quantum electrodynamics. Physical Review Letters, 120(14), apr 2018.
    [56] Anton Frisk Kockum, Martin Sandberg, Michael R Vissers, Jiansong Gao, Goran Johansson, and David P Pappas. Detailed modelling of the suscepti- bility of a thermally populated, strongly driven circuit-QED system. Journalof Physics B: Atomic, Molecular and Optical Physics, 46(22):224014, nov 2013.
    [57] K. Koshino, H. Terai, K. Inomata, T. Yamamoto, W. Qiu, Z. Wang, and Y. Nakamura. Observation of the three-state dressed states in circuit quan- tum electrodynamics. Physical Review Letters, 110(26), jun 2013.
    [58] Kazuki Koshino and Yasunobu Nakamura. Control of the radiative level shift and linewidth of a superconducting artificial atom through a variable boundary condition. New Journal of Physics, 14(4):043005, apr 2012.
    [59] R. Kubo. The fluctuation-dissipation theorem. Reports on Progress in Physics 29, 255, 1966.
    [60] Ryogo Kubo. Statistical-mechanical theory of irreversible processes. i. gen- eral theory and simple applications to magnetic and conduction problems. Journal of the Physical Society of Japan, 12(6):570–586, jun 1957.
    [61] Willis E. Lamb and Robert C. Retherford. Fine structure of the hydrogen atom by a microwave method. Physical Review, 72(3):241–243, aug 1947.
    [62] K. W. Lehnert, K. Bladh, L. F. Spietz, D. Gunnarsson, D. I. Schuster, P. Delsing, and R. J. Schoelkopf. Measurement of the excited-state lifetime of a microelectronic circuit. Physical Review Letters, 90(2), jan 2003.
    [63] Hai-Chao Li, Guo-Qin Ge, and Shun-Bin Feng. Dressed zeno effect in circuit quantum electrodynamics. Physical Review A, 89(6), jun 2014.
    [64] Juntao Li, Liam O’Faolain, Isabella H. Rey, and Thomas F. Krauss. Four- wave mixing in photonic crystal waveguides: slow light enhancement and limitations. Optics Express, 19(5):4458, feb 2011.
    [65] Hong Pin Liu. Level transitions in strongly driven superconducting qubit. Master’s thesis, National Chiao Tung University, 2018.
    [66] Qi-Chun Liu, Tie-Fu Li, Xiao-Qing Luo, Hu Zhao, Wei Xiong, Ying-Shan Zhang, Zhen Chen, J. S. Liu, Wei Chen, Franco Nori, J. S. Tsai, and J. Q. You. Method for identifying electromagnetically induced transparency in atunable circuit quantum electrodynamics system. Physical Review A, 93(5), may 2016.
    [67] Junling Long, H. S. Ku, Xian Wu, Xiu Gu, Russell E. Lake, Mustafa Bal, Yu xi Liu, and David P. Pappas. Electromagnetically induced transparency in circuit quantum electrodynamics with nested polariton states. Physical Review Letters, 120(8), feb 2018.
    [68] Erik Lucero, R. Barends, Y. Chen, J. Kelly, M. Mariantoni, A. Megrant, P. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. White, Y. Yin, A. N. Cleland, and John M. Martinis. Computing prime factors with a josephson phase qubit quantum processor. Nature Physics, 8(10):719–723, aug 2012.
    [69] Yuriy Makhlin, Gerd Schon, and Alexander Shnirman. Quantum-state engineering with josephson-junction devices. Reviews of Modern Physics, 73(2):357–400, may 2001.
    [70] V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret. Fluxonium: Single cooper-pair circuit free of charge offsets. Science, 326(5949):113–116, oct 2009.
    [71] John M. Martinis, K. B. Cooper, R. McDermott, Matthias Steffen, Markus Ansmann, K. D. Osborn, K. Cicak, Seongshik Oh, D. P. Pappas, R. W. Simmonds, and Clare C. Yu. Decoherence in josephson qubits from dielectric loss. Physical Review Letters, 95(21), nov 2005.
    [72] John M. Martinis, S. Nam, J. Aumentado, and C. Urbina. Rabi oscillations in a large josephson-junction qubit. Physical Review Letters, 89(11), aug 2002.
    [73] M. Metcalfe, E. Boaknin, V. Manucharyan, R. Vijay, I. Siddiqi, C. Rigetti, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret. Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier. Physical Review B, 76(17), nov 2007.
    [74] Mohammad Mirhosseini, Eunjong Kim, Vinicius S. Ferreira, MahmoudKalaee, Alp Sipahigil, Andrew J. Keller, and Oskar Painter. Superconduct- ing metamaterials for waveguide quantum electrodynamics. arXiv, 2018.

    [75] B. R. Mollow. Power spectrum of light scattered by two-level systems. Phys- ical Review, 188(5):1969–1975, dec 1969.
    [76] B. R. Mollow. Stimulated emission and absorption near resonance for driven systems. Physical Review A, 5(5):2217–2222, may 1972.
    [77] J Mompart and R Corbalan. Lasing without inversion. Journal of Optics B: Quantum and Semiclassical Optics, 2(3):R7–R24, may 2000.
    [78] Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai. Coherent control of macro- scopic quantum states in a single-cooper-pair box. Nature, 398(6730):786– 788, apr 1999.
    [79] Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai. Rabi oscillations in a josephson-junction charge two-level system. Physical Review Letters, 87(24), nov 2001.
    [80] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quan- tum Information. CAMBRIDGE UNIVERSITY PRESS, 2010.
    [81] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hummer, E. Solano, A. Marx, and R. Gross. Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nature Physics, 6(10):772–776, jul 2010.
    [82] D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tunnermann. Effi- cient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber. Optics Letters, 34(22):3499, nov 2009.
    [83] H. Nyquist. Thermal agitation of electric charge in conductors. Physical Review 32, 110, 1928.
    [84] T. P. Orlando, J. E. Mooij, Lin Tian, Caspar H. van der Wal, L. S. Levi- tov, Seth Lloyd, and J. J. Mazo. Superconducting persistent-current qubit. Physical Review B, 60(22):15398–15413, dec 1999.
    [85] Bo Peng, Sahin Kaya Ozdemir, Weijian Chen, Franco Nori, and Lan Yang. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nature Communications, 5:5082, oct 2014.
    [86] B Peropadre, J Lindkvist, I-C Hoi, C M Wilson, J J Garcia-Ripoll, P Delsing, and G Johansson. Scattering of coherent states on a single artificial atom. New Journal of Physics, 15(3):035009, mar 2013.
    [87] M. E. Peskin and D. V. Schroeder. An Introduction to Quantum Field The- ory. Westview Press, 1995.
    [88] D.M. Pozar. Microwave Engineering. Wiley, 2012.
    [89] E. M. Purcell. Spontaneous emission probabilities at radio frequencies. Phys-
    ical Review 69, 681, 1946.
    [90] Ileana Rau, Goran Johansson, and Alexander Shnirman. Cavity quantum electrodynamics in superconducting circuits: Susceptibility at elevated tem- peratures. Physical Review B, 70(5), aug 2004.
    [91] Ananda Roy and Michel Devoret. Introduction to parametric amplifica- tion of quantum signals with josephson circuits. Comptes Rendus Physique, 17(7):740–755, aug 2016.
    [92] Dibyendu Roy, C. M. Wilson, and Ofer Firstenberg. Colloquium : Strongly interacting photons in one-dimensional continuum. Reviews of Modern Physics, 89(2), may 2017.
    [93] J. J. Sakurai. Modern Quantum Mechanics. Addison-Wesley Pub- lishing Company, Inc., 1994.
    [94] Marian 0. Scully and M. Suhail Zubairy. Quantum Optics. CAMBRIDGE UNIVERSITY PRESS, 1997.
    [95] R. Simmonds, K. Lang, D. Hite, S. Nam, D. Pappas, and John Martinis. Decoherence in josephson phase qubits from junction resonators. Physical Review Letters, 93(7), aug 2004.
    [96] M. J. SPARNAAY. Attractive forces between flat plates. Nature, 180(4581):334–335, aug 1957.
    [97] Hui-Chen Sun, Yu xi Liu, Hou Ian, J. Q. You, E. Ilichev, and Franco Nori. Electromagnetically induced transparency and autler-townes splitting in su- perconducting flux quantum circuits. Physical Review A, 89(6), jun 2014.
    [98] Neereja M. Sundaresan, Rex Lundgren, Guanyu Zhu, Alexey V. Gorshkov, and Andrew A. Houck. Interacting qubit-photon bound states with super- conducting circuits. arXiv, 2018.
    [99] Dieter Suter and Gonzalo A. Alvarez. Colloquium: Protecting quantum information against environmental noise. Reviews of Modern Physics, 88(4), oct 2016.
    [100] M. Tinkham. Introduction to Superconductivity. Dover Publications Inc, 2004.
    [101] W. G. Unruh. Notes on black-hole evaporation. Physical Review D, 14(4):870–892, aug 1976.
    [102] A. F. van Loo, A. Fedorov, K. Lalumiere, B. C. Sanders, A. Blais, and A. Wallraff. Photon-mediated interactions between distant artificial atoms. Science, 342(6165):1494–1496, nov 2013.
    [103] Arjan Ferdinand van Loo. Interactions in waveguide quantum electrodynam- ics. PhD thesis, ETH, 2014.
    [104] D. Vion. Manipulating the quantum state of an electrical circuit. Science, 296(5569):886–889, may 2002.
    [105] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf. Strong coupling of a singlephoton to a superconducting qubit using circuit quantum electrodynamics. Nature, 431(7005):162–167, sep 2004.

    [106] V. F. Weisskopf and E. Wigner. Berechnung der naturlichen linienbreite auf grund der diracschen lichttheorie. Zeitschrift fur Physik 63, 54, 1930.
    [107] P. Y. Wen, A. F. Kockum, H. Ian, J. C. Chen, F. Nori, and I.-C. Hoi. Reflective amplification without population inversion from a strongly driven superconducting qubit. Physical Review Letters, 120(6), feb 2018.
    [108] G Wendin. Quantum information processing with superconducting circuits: a review. Reports on Progress in Physics, 80(10):106001, sep 2017.
    [109] C. M. Wilson, T. Duty, F. Persson, M. Sandberg, G. Johansson, and P. Dels- ing. Coherence times of dressed states of a superconducting qubit under extreme driving. Physical Review Letters, 98(25), jun 2007.
    [110] C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing. Observation of the dynamical casimir effect in a superconducting circuit. Nature, 479(7373):376–379, nov 2011.
    [111] F. Y. Wu, S. Ezekiel, M. Ducloy, and B. R. Mollow. Observation of ampli- fication in a strongly driven two-level atomic system at optical frequencies. Physical Review Letters, 38(19):1077–1080, may 1977.
    [112] X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham. Coherent optical spectroscopy of a strongly driven quantum dot. Science, 317(5840):929–932, aug 2007.
    [113] J. Q. You and Franco Nori. Superconducting circuits and quantum infor- mation. Physics Today, 58(11):42–47, nov 2005.
    [114] J. Q. You and Franco Nori. Atomic physics and quantum optics using su- perconducting circuits. Nature, 474(7353):589–597, jun 2011.
    [115] J. Q. You, Yu xi Liu, C. P. Sun, and Franco Nori. Persistent single-photon production by tunable on-chip micromaser with a superconducting quantum circuit. Physical Review B, 75(10), mar 2007.
    [116] Y. Yu. Coherent temporal oscillations of macroscopic quantum states in a josephson junction. Science, 296(5569):889–892, may 2002.

    QR CODE