研究生: |
黃婉真 Huang, Wan-Chen |
---|---|
論文名稱: |
一、氧化亞銅立方體到菱形十二面體的製備及其光催化活性的探討 二、以溶劑熱法合成閃鋅礦和纖維鋅礦之硫化銅銦奈米晶體及其太陽能電池的應用 I. Synthesis of Cu2O Nanocrystals with Systematic Shape Evolution from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity II. Solvothermal Synthesis of Zinc Blende and Wurtzite CuInS2 Nanocrystals for Photovoltaic Application |
指導教授: |
黃暄益
Huang, Hsua-Yi |
口試委員: |
柯富祥
段興宇 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 108 |
中文關鍵詞: | 氧化亞銅 、形狀演繹 、晶面催化 、太陽能電池 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一、氧化亞銅立方體到菱形十二面體的製備及其光催化活性的探討
本論文利用簡易的方法在酸性下合成具系統性表面形貌變化的氧化亞銅(Cu2O)奈米晶體。經由改變加入含有氯化銅(CuCl2)、氫氧化鈉(NaOH)、以及界面活性劑十二烷基硫酸鈉(Sodium dodecyl sulfate,SDS)水溶液中還原劑鹽酸羥胺(hydroxylamine hydrochloride,NH2OH•HCl)的量,即可合成出具有立方體(cubic)、面突出的立方體(faced-raised cubic)、截邊截角八面體(edge- and corner-truncated octahedral)、全截角菱行十二面體(all-corner-truncated rhombic dodecahedral)、{100}面截角菱行十二面體({100}-truncated rhombic dodecahedral)、以及菱形十二面體(rhombic dodecahedral)氧化亞銅的奈米晶體。結構鑑定中證實了菱形十二面體確實是由{110}面所組成。這是第一次合成出300奈米的氧化亞銅菱形十二面體結構。在紫外光可見光吸收光譜中,約在波長440奈米能觀察出微弱的氧化亞銅晶粒的特徵吸收,然而散射帶(scattering band)則是主導了整個圖譜。藉由廣泛的分析中間產物,氧化亞銅菱形十二面體的成長機制也被探討。氧化亞銅菱形十二面體在光降分解帶負電甲基橙(methyl orange)的過程中,比起氧化亞銅八面體及立方體有更好的催化能力。這些結果證實了氧化亞銅的{100}、{110}、以及{111}面在催化活性上有顯著不同的效果。
We report a facile method for the synthesis of cuprous oxide nanocrystals with systematic morphological evolution in an acidic condition. Cubic, faced-raised cubic, edge- and corner-truncated octahedral, all-corner-truncated rhombic dodecahedral, {100}-truncated rhombic dodecahedral, and rhombic dodecahedral Cu2O nanocrystals have been synthesized in an aqueous solution of CuCl2, sodium dodecyl sulfate (SDS) surfactant, and hydroxylamine (NH2OH•HCl) reductant by simply varying the volume of hydroxylamine added to the reaction mixture. Structural characterization confirmed that the rhombic dodecahedra are indeed bounded by {110} facets. This is the first time Cu2O rhombic dodecahedral nanocrystals with sizes of ~300 nm are synthesized. Optical characterization of these Cu2O nanocrystals showed band gap absorption at ~440 nm and strong light scattering bands extending from the visible to the near-infrared light region. Through an extensive examination of the intermediate structures formed, the growth mechanism of rhombic dodecahedra were investigated. In the photodegradation of negatively charged methyl orange, rhombic dodecahedra showed significantly better photocatalytic performance than cubic and octahedral crystals. The results clearly demonstrate the dramatic differences in the catalytic activities of the {100}, {110}, and {111} faces of Cu2O structures.
二、以溶劑熱法合成閃鋅礦和纖維鋅礦之硫化銅銦奈米晶體及其太陽能電池的應用
具有相當潛力的銅銦硫太陽能電池是由三個元素(I-III-VI2)所組成的半導體,可作為薄膜太陽能電池中的吸收層材料。目前銅銦硫太陽能電池已經被證實了具有20%的太陽能轉換效率。大部分所合成出銅銦硫的奈米晶體結構為黃銅礦(chalcopyrite),然而在2008年,Pan的研究團隊利用熱注射法第一次成功地合成出閃鋅礦(zinc blende)以及纖維鋅礦(wurtzite)的銅銦硫奈米晶體。
本論文則是在溫度160℃下,以氯化銅(CuCl2)、氯化銦(InCl3)、硫代硫醯胺(thioacetamide,C2H5NS)、十八油胺(oleylamine,C18H37N)、以及乙二胺(ethylenediamine,C2H8N2)為反應物。僅藉由調控十八油胺以及乙二胺加入的比例則可以合成出閃鋅礦(zinc blende)以及纖維鋅礦(wurtzite)的銅銦硫奈米晶體。粉末X光繞射儀和穿透式電子顯微鏡的鑑定可以很明確地觀測到銅銦硫奈米結構的相轉換。在紫外光可見光吸收光譜中,可以發現所合成的銅銦硫產物皆於可見光到近紅外光區擁有強烈的全區吸收。在此我們也利用此特性將銅銦硫奈米粒子製成太陽能電池的吸收薄膜層,證實了合成出的銅銦硫奈米晶體確實能應用於太陽能電池。
A promising thin film photovoltaic technology is CIS-based solar cells, which are based on the use of ternary I-III-VI2 semiconductors as photovoltaic absorber material. CIS solar cells have already demonstrated nearly 20% solar energy conversion efficiency. CuInS2 nanostructures with mostly a chalcopyrite crystal structure have been prepared. In 2008, by using a hot-injection method, Pan et al. prepared zinc blende and wurtzite CuInS2 nanocrystals for the first time. Here, we have synthesized CuInS2 nanocrystals by a simple one-step solvothermal method at 160 ºC for 12 h. Copper chloride (CuCl2), indium chloride (InCl3), thioacetamide (TAA), ethylenediamine and oleylamine were used as the reagents. By adjusting the volume of oleylamine and ethylenediamine used while keeping the other experimental conditions constant, the phase transition of CuInS2 nanostructures from zinc blende (cubic) to wurtzite (hexagonal) structure can be achieved. The crystal phases were confirmed by powder X-ray diffraction and selected-area electron diffraction techniques. The CuInS2 products show strong light absorption from the entire visible to the near-IR region. This characteristic suggests their possible integration into solar cells with enhanced solar energy conversion efficiency.
CHAPER 1
Synthesis of Cu2O Nanocrystals with Systematic Shape Evolution from Cubic to Rhombic Dodecahedral Structures
and Their Comparative Photocatalytic Activity
(1) Ng, C. H. B.; Fan, W. Y. J. Phys. Chem. B 2006, 110, 20801.
(2) Zhang, H.; Zhu, Q.; Zhang, Y.; Wang, Y.; Zhao, L.; Yu, B. Adv. Funct. Mater. 2007, 17, 2766.
(3) Xu, H.; Wang, W.; Zhu, W. J. Phys. Chem. B 2006, 110, 13829.
(4) White, B.; Yin, M.; Hall, A.; Le, D.; Stolbov, S.; Rahman, T.; Turro, N.; O’Brien, S. Nano Lett. 2006, 6, 2095.
(5) Hara, M.; Kondo, T.; Komoda, M.; Ikeda, S.; Shinohara, K.; Tanaka, A.; Kondo, J. N.; Domen, K. Chem. Commun. 1998, 357.
(6) Tang, B.-X.; Wang, F.; Li, J.-H.; Xie, Y.-X.; Zhang, M.-B. J. Org. Chem. 2007, 72, 6294.
(7) Altman, R. A.; Koval, E. D.; Buchwald, S. L. J. Org. Chem. 2007, 72, 6190.
(8) Li, J.-H.; Tang, B.-X.; Tao, L.-M.; Xie, Y.-X.; Liang, Y.; Zhang, M.-B. J. Org. Chem. 2006, 71, 7488.
(9) McShane, C. M.; Siripala, W. P.; Choi, K.-S. J. Phys. Chem. Lett. 2010, 1, 2666.
(10) Gou, L.; Murphy, C. J. Nano Lett. 2003, 3, 231.
(11) Kuo, C.-H.; Chen, C.-H.; Huang, M. H. Adv. Funct. Mater. 2007, 17, 3773.
(12) Kuo, C.-H.; Huang, M. H. J. Phys. Chem. C 2008, 112, 18355.
(13) Siegfried, M. J.; Choi, K.-S. J. Am. Chem. Soc. 2006, 128, 10356.
(14) Siegfried, M. J.; Choi, K.-S. Adv. Mater. 2004, 16, 1743.
(15) Liang, X.; Gao, L.; Yang, S.; Sun, J. Adv. Mater. 2009, 21, 2068.
(16) Yao, K. X.; Yin, X. M.; Wang, T. H.; Zeng, H. C. J. Am. Chem. Soc. 2010, 132, 6131.
(17) Kuo, C.-H.; Huang, M. H. J. Am. Chem. Soc. 2008, 130, 12815.
(18) Zhang, Y.; Deng, B.; Zhang, Gao, D.; Xu, A.-W. J. Phys. Chem. C 2010, 114, 5073.
(19) Singh, D. P.; Neti, N. R.; Sinha, A. S. K.; Srivastava, O. N. J. Phys. Chem. C 2007, 111, 1638.
(20) Tan, Y. W.; Xue, X. Y.; Peng, Q.; Zhao, H.; Wang, T. H.; Li, Y. D. Nano Lett. 2007, 7, 3723.
(21) Sui, Y. M.; Fu, W. Y.; Zeng, Y.; Yang, H. B.; Zhang, Y. Y.; Chen, H.; Li, Y. X.; Li, M. H.; Zou, G. T. Angew. Chem., Int. Ed. 2010, 49, 4282.
(22) Lu, C. H.; Qi, L. M.; Yang, J. H.; Wang, X. Y.; Zhang, D. Y.; Xie, J. L.; Ma, J. M. Adv. Mater. 2005, 17, 2562.
(23) Chang, Y.; Teo, J. J.; Zeng, H. C. Langmuir 2005, 21, 1074.
(24) Teo, J. J.; Chang, Y.; Zeng, H. C. Langmuir 2006, 22, 7369.
(25) McShane, C. M.; Choi, K. S. J. Am. Chem. Soc. 2009, 131, 2561.
(26) Yu, H.; Yu, J.; Liu, S.; Mann, S. Chem. Mater. 2007, 19, 4327.
(27) Kuo, C.-H.; Huang, M. H. Nano Today 2010, 5, 106.
(28) Wang, D.; Mo, M.; Yu, D.; Xu, L.; Li, F.; Qian, Y. Cryst. Growth Des. 2003, 3, 717.
(29) Ho, J. Y.; Huang, M. H. J. Phys. Chem. C. 2009, 113, 14159.
(30) Kuo, C.-H.; Yang, Y.-C.; Gwo, S. G.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 1052.
(31) Zhang, Y.; Deng, B.; Zhang, T.; Gao, D.; Xu, A.-W. J. Phys. Chem. C. 2010, 114, 5073.
CHAPER 2
Solvothermal Synthesis of Zinc Blende and Wurtzite CuInS2 Nanocrystals and Their Photovoltaic Performance
(1) Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C. L.; To, B.; Noufi, R. Prog. Photovolt: Res. Appl. 2008, 16, 235.
(2) Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Schmidtke, J. P.; Dunn, L.; Dodabalapur, A.; Barbara, P. F; Korgel, B. A. J. Am. Chem. Soc. 2008, 130, 16770.
(3) Guo, Q.; Ford, G. M.; Hillhouse, H. W.; Agrawal, R. Nano Lett. 2009, 9, 3060.
(4) Liu, W.; Mitzi, D. B.; Yuan, M.; Kellock, A. J.; Chey, S. J.; Gunawan, O. Chem. Mater. 2010, 22, 1010.
(5) Kwak, W.-C.; Han, S.-H.; Kim, T. G.; Sung, Y.-M. Cryst. Growth Des. 2010, 10, 5297.
(6) Li, L.; Coates, N.; Moses, D. J. Am. Chem. Soc. 2010, 132, 22.
(7) Weil, B. D.; Connor, S. T.; Cui, Y. J. Am. Chem. Soc. 2010, 132, 6642.
(8) Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K.K.; Hepp, A. F. Chem. Mater. 2003, 15, 3142.
(9) Mitchell, K.; Fahrenbruch, A. L.; Bube, R. H. J. Appl. Phys. 1977, 48, 829.
(10) Meese, J. M.; Manthuruthil, J. C.; Locker, D. R. Bull. Am. Phys. Soc. 1975, 20, 696.
(11) Braunger, D.; Hariskos, D.; Walter, T.; Schock, H. W. Sol. Energy Mater. Sol. Cells 1996, 40, 97.
(12) Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Hepp, A. F. J. Phys. Chem. B 2004, 108, 12429.
(13) Nairn, J. J.; Shapiro, P. J.; Twamley, B.; Pounds, T.; vonWandruszka, R.; Fletcher, T. R.; Williams, M.; Wang, C.; Norton, M. G. Nano Lett. 2006, 6, 1218.
(14) Batabyal, S. K.; Tian, L.; Venkatram, N.; Ji, W.; Vittal, J. J. J. Phys. Chem. C. 2009, 113, 15037.
(15) Xiao, J. P.; Xie, Y.; Tang, R.; Qian, Y. T. J. Solid State Chem. 2001, 161, 179.
(16) Xiao, J. P.; Xie, Y.; Xiong, Y. J.; Tang, R.; Qian, Y. T. J. Mater. Chem. 2001, 11, 1417.
(17) Peng, S.; Liang, J.; Zhang, L.; Shi, Y.; Chen, J. J. Cryst. Growth 2007, 305, 99.
(18) Qi, Y.; Liu, Q.; Tang, K.; Liang, Z.; Ren, Z.; Liu, X. J. Phys. Chem. C. 2009, 113, 3939.
(19) Choi, S. H.; Kim, E. G.; Hyeon, T. J. Am. Chem. Soc., 2006, 128, 2520.
(20) Connor, S. T.; Hsu, C.-M.; Weil, B. D.; Aloni, S.; Cui, Y. J. Am. Chem. Soc. 2009, 131, 4962.
(21) Pan, D. C.; An, L. J.; Sun, Z. M.; Hou, W.; Yang, Y.; Yang, Z. Z.; Lu, Y. F. J. Am. Chem. Soc. 2008, 130, 5620.