研究生: |
游政豪 Yu, Cheng-Hao |
---|---|
論文名稱: |
以海藻模擬生物組織遭磷酸礦化之機制 Simulating phosphatic fossilization with Ulva fasciata |
指導教授: |
李家維
Li, Chia-Wei |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 磷酸礦化 、陡山沱 、瓮安生物群 |
外文關鍵詞: | fossilization, Doushantuo, phosphatization |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
位於中國南方的陡山沱期地層屬於前寒武紀,沈積年齡距今約6億到5億5仟萬年前,該時期的磷質岩層保存了大量的後生動物胚胎、幼體及成體,多細胞藻類、疑源類等微型化石,其3維立體結構也常被精細的複製下來。通常認為快速沈積掩埋的結果造成此大量生物群化石的細微構造被保存下來,據此可在實驗室中嘗試重現此一過程。我們選擇了多細胞藻類裂片石蓴(Ulva fasciata)作為重現磷質化石形成過程的實驗材料,並嘗試將實驗條件簡化以尋找影響磷質化石形成的因素,並了解其在化石形成過程扮演的角色。
在過去模擬軟組織化石形成過程的研究裡,傾向將其歸因於微生物引起礦物顆粒吸附於生物體的有機構造,但在模擬此機制的實驗系統始終未見生物體內部遭受礦化。在本篇論文中,我們從前寒武紀時期磷礦形成事件本身是否足以造成磷質化石形成的角度出發,根據陡山沱期地層環境及化石性質,嘗試以溫度及pH值的改變誘發磷酸鈣沈積使石蓴藻體磷酸礦化,實驗結果顯示我們成功的使藻體內部發生磷鈣礦物沈積並將其細胞構造初步的保留下來。另一方面,實驗結果亦顯示,若鎂不存在系統中,藻體內部的沈積便不會發生,鎂在磷質化石形成過程可能扮演重要的角色。據此,我們可以推測磷質化石形成過程可能肇因於環境變動的災難造成大量生物死亡,同時引起磷礦沈積將生物屍骸掩埋並使其磷酸礦化。
An extraordinary fossil record of multicellular life were found in phosphorites from the Precambrian Doushantuo Formation(550~600 Mya), southern China. These fossils, which three-dimensional cellular structure details were perfectly preserved, have been classified as animal embryo, larva, and adult forms, as well as multicellular thallophytes, giant acritarch, and spheroidal chlorophyta. The well-preserved structural details indicates a rapid burial process, thus it is possible to simulate fossilization process in laboratory time. Ulva fasciata, a green algae, was selected as the major experimental material, and simplified control factors were apply to explore the most probable factors that influence fossilization and determine the possible roles they play during fossilization process.
In previous experimental approach, the replicated morphology of soft-bodied fossils has been attributed to adsorption of pre-existing mineral clays and correlated to bacteria activity. But the interior of the subjects was not mineralized in early experiments. We attempted to develop several phosphorite deposition systems based on conditions of ancient environment and fossils records. We induced the formation of calcium phosphate deposits by increasing the temperature and the following rise of pH value. The results showed that the interior of algal cells was mineralized and detail morphology was preliminarily replicated. The results also indicated that magnesium played an important role in the phoosphorite deposition systems. No deposition occurred within the cells in the absence of magnesium. We suggest that the formation of fossils in Doushantuo Formation may be the consequence of a catastrophic rapid burial and phosphorites deposition at an elevated temperature on the results mentioned above.
Allison, P. A. and Briggs, D. E. G., 1991a, Preface, in: Taphonomy: Releasing the data locked in the fossil record (Allison, P. A. and Briggs, D. E. G., eds.), Belhaven Press, A division of Pinter Publishers, London, pp. vii-x.
Allison, P. A. and Briggs, D. E. G., 1991b, Taphonomy of nonmineralized tissues, in: Taphonomy: Releasing the data locked in the fossil record (Allison, P. A. and Briggs, D. E. G., eds.), Belhaven Press, A division of Pinter Publishers, London, pp. 25-70.
Allison, P. A. and Briggs, D. E. G.., 1991c, Taphonomy of soft-bodied animals, in: The processes of fossilization (Donovan, S. K., ed.), Plenum Press, New York, pp. 121-140.
Briggs, D. E. G., 1996, Experimental taphonomy, Palaios 10, 539-550.
Briggs, D. E. G., Erwin, D. H. and Collier, F. J.(eds.), 1994, The fossils of the Burgess Shale, Belhaven Press, A division of Pinter Publishers, London.
Briggs, D. E. G. and Kear A. J., 1993, Fossilization of soft tissue in the laboratory, Science 259, 1439-1442.
Burton, F. D. and Wright, D., 1981, Sea water and its evolution, in: The evolving earth (Cocks, L. R. M., ed.), British Museum (Natural History), London and the Press Syndicate of University of Cambridge, pp. 89-102.
Cad□e, 1991, The history of taphonomy, in: The processes of fossilization (Donovan, S. K., ed.), Plenum Press, New York, pp. 3-21.
Chen, D. F., Dong, W. Q., Qi, L., Chen, G. Q. and Chen, X. P., 2003, Possible REE constraints on the depositional and diagenetic environment of Doushantuo Formation phosphorites containing the earliest metazoan fauna, Chemical Geology 201, 103-118.
Chen, J. Y., Bottjer, D. J., Oliveri P., Dornbos, S. Q., Gao, F., Ruffins, S., Chi, H. M. and Li, C. W., 2004, Small bilaterian fossils from 40 to 55 million years before the Cambrian, Science 305, 218-222
Chen, J. Y., Oliveri, P., Li, C. W., Zhou, G. Q., Gao, F., Hagadorn, J. W. and Peterson, K. J., 2000, Precambrian animal diversity: putative phosphatized embryos from the Doushantuo Formation of China, Proceedings of the National Academy of Sciences, 97(9), 4457-4462.
Efremov, I. A., 1940, Taphonomy: new branch of paleontology, Pan-American Geologist 74(2), 81-93.
Francois, R., 2004, Palaeoclimate: Cool stratification, Nature 428, 31-32.
F□llmi, K. B., 1996, The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits, Earth-Science Reviews 40, 55-124.
Gabbott, S. E., 1998, Taphonomy of the Ordovician Soom Shale Lagerst□tte: an example of soft tissue preservation in clay minerals, Palaeonotology 41, 631-667.
Gabbott, S. E., Norry, M. J., Aldredge, R. J. and Theron, J. N., 2001, Preservation of fossils in clay minerals: a unique example from the Upper Ordovician Soom Shale, South Africa, Proceedings of the Yorkshire Geological Society 53, 237-244.
Hoffman, P. F., Kaufman, A. J., Halverson, G. P. and Schrag, D. P., 1998, A Neoproterozoic Snowball, Science 281, 1342-1346.
Keil, R. G., Montlucon, D. B., Prahl, F. G., and Hedges, J. L., 1994, Sorptive preservation of labile organic matter in marine sediments, Nature 370, 549-552.
Li, C. W., Chen, J. Y. and Hua, T. E., 1998, Science 279, 879-882.
Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A., Demicco, R. V., 2001, Science 294, 1086-1088.
Lucas, J. and Pr□v□t, L. E., 1991, Phosphates and fossil Preservation, in: Taphonomy: Releasing the data locked in the fossil record (Allison, P. A. and Briggs, D. E. G., eds.), Belhaven Press, A division of Pinter Publishers, London, pp. 389-409.
Martin, D., Briggs, D. E. G. and Parkes, R. J., 2003, Experimental mineralization of invertebrate eggs and preservation of Neoproterozoic embryos, Geological Society of America 31, 39-42.
Martin, D., Briggs, D. E. G. and Parkes, R. J., 2004, Experimental attachment of sediment particles to invertebrate eggs and preservation of soft-bodied fossils, Journal of the Geological Society 161, 735-738.
Orr, P. J., Briggs, D. E. G. and Kearns, S. L., 1998, Cambrian Burgess Shale animals replicated in clay minerals, Science 281, 1173-1175.
Petrovich, R., 2001, Mechanisms of fossilization of the soft-bodied and lightly armored faunas of the Burgess Shale and of some other classical localities, American Journal of Science 301, 683-726.
Schulz H. N. and Schulz H. D., 2005, Large sulfur bateria and the formation of phosphorite, Science 307, 416-417.
Sigman, D. M., Jaccard, S. L. and Haug, G. H., 2004, Polar ocean stratification in a cold climate, Nature 428, 59-63.
Xiao, S. H., Knoll A. H., Yuan, X. L. and Pueschel C. H., 2004, Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red alage. American Journal of Botany 91(2), 214–227.
Xiao, S. H., Zhang, Y. and Knoll A. H., 1998, Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391, 553-558.
陳從雲, 1984, 中國南方震旦-寒武紀磷塊岩礦床的地質特徵及成礦規律, 第五屆國際磷塊岩討論會論文集 2, 273-281.
楊衛東, 肖金凱, 于炳松, 方濤, 陳豐和魯曉鶯, 1997, 成磷期古海洋環境研究, in: 滇黔磷塊岩沈積學、地球化學與可持續開發戰略, 地質出版社, 北京, pp. 68-77.
戴永定 等著, 1994, 生物礦物學, 石油工業出版社.