研究生: |
張瀚丞 Chang, Han Chen |
---|---|
論文名稱: |
表面鍍覆六方晶系氮化硼之奈米碳管:界面極化強化場發射特性 Hexagonal boron nitride coated carbon nanotubes:interlayer polarization improved field emission |
指導教授: |
徐文光
Hsu, Wen Kuang |
口試委員: |
李紫原
Lee, Chi Young 林樹均 Lin, Su Jien 郭信甫 Kuo, Hsin Fu 郭信良 Kuo, Hsin Liang |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 70 |
中文關鍵詞: | 奈米碳管 、場發射 、氮化硼 、界面極化 |
外文關鍵詞: | Carbon nanotube, Field emission, Boron nitride, Interlayer polarization |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米碳管具有高機械強度、強化學穩定性、高長徑比與場增強因子等特性,相當適合作為場發射之發射體。在本文中,我們將奈米碳管鍍覆上六方晶系之氮化硼,使界面處產生極化現象使得電子分別坐落於氮原子及碳原子處,且在氮化硼和奈米碳管間產生一電場,此電場會幫助電子穿越氮化硼和奈米碳管之界面處然後由氮的電子填滿帶及硼的電子未填滿帶射出。鍍有氮化硼之奈米碳管之場發射電流密度具有更高的穩定性,其波動程度在4%之內。文中量測到之起始電場由奈米碳管的6.51 V/μm變成鍍完氮化硼後的2.65-2.67 V/μm;臨界電場由9.82 V/μm變為4.41-4.43 V/μm。
Carbon nanotubes (CNTs) which have high mechanical strength, chemical stability, aspect ratio, and field enhancement factor (β) are considered as ideal field emitters. In this thesis, coating of h-BN onto carbon nanotubes induces polarization at interfaces and charges become localized at N and C atoms respectively. Field emission of coated tubes is found to be highly stable and current density fluctuates within 4%. Study further reveals that electric field established between coatings and tubes facilitates charge transfer across interfaces and electrons are emitted through occupied and unoccupied bands of N and B atoms. Measurements give turn on field = 6.51 V/μm for CNTs and 2.65-2.67 V/μm for coated tubes; the threshold field being measured to be 9.82 V/μm and 4.41-4.43 V/μm respectively.
[1] X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang, S. Fan, Nano Letters, 2009, 9, 3137.
[2] http://news.nationalgeographic.com/news/2006/11/061116-nanotech-swords.html
[3] S. Gullapalli, M. S. Wong, Chemical Engineering Progress, 2011, 107, 28.
[4] H. Kroto, Rev. Mod. Phys. 1997, 69, 703.
[5] R. F. Curl, Rev. Mod. Phys. 1997, 69, 691.
[6] S. Iijima, T. Ichihashi, Nature 1991, 56, 354.
[7] R. H. Baughman, A. A. Z., W. A. de Heer, Science, 2002, 297, 787.
[8] R. Saito, D. Gene, M. Dresselhaus, Physical Properties of Carbon Nanotubes, London : Imperial College Press, 1998.
[9] T. Dove, M., Introduction to lattice dynamics. Cambridge University Press, 1993.
[10] M. Terrones, Annu. Rev. Mater. Res., 2003, 33, 419.
[11] T. W. Odom, J.-L. Huang, P. Kim, C. M. Lieber, Nature, 1998, 391, 62.
[12] J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature, 1998, 391, 59.
[13] B. I. Yakobson, R. E. Smalley, Am. Sci., 1997, 85, 324.
[14] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of fullerenes & Carbon Nanotubes, San Diego: Academic Press, 1996.
[15] P. M. Ajayan, S. Iijima, Nature, 1992, 358, 23.
[16] S. Iijima, T. Ichihashi, Nature, 1993, 363, 603.
[17] Y. C. Choi, Y. M. Shin, S. C. Lim, D. J. Bae, Y. H. Lee, B. S. Lee, J. Appl. Phys., 2000, 88, 4898.
[18] E. F. Kukovitsky, S. G. L’vov, N. A. Sainov, V. A. Shustov, L. A. Chernozatonskii, Chem. Phys. Lett., 2002, 355, 497.
[19] L. Kim, E. M. Lee, S. J. Cho, J. S. Suh, Carbon, 2005, 43, 1453.
[20] J. C. Charlier, J. P. Michenaud, Phys. Rev. Lett., 1993, 70, 1858.
[21] N. Wang, Z. K. Tang, G. D. Li, J. S. Chen, Nature, 2000, 408, 50.
[22] Q. H. Yang, S. Bai, J. L. Sauvajol, J. B. Bai, Adv. Mater., 2003, 15, 792.
[23] T. W. Ebbesen, P. M. Ajayan, Nature, 1992, 358, 220.
[24] C.-H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. Lett., 1998, 81, 1869.
[25] C. L. Kane, E. J. Mele, Phts. Rev. Lett., 1997, 78, 1932.
[26] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys., 2009, 81, 109.
[27] M. S. Dresselhaus, G. Dresselhaus, J. C. Charlier, E. Hernández, Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci., 2004, 362, 2065.
[28] N. Hamada, S. Sawade, A. Oshiyama, Phys. Rev. Lett., 1992, 68, 1579.
[29] J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett., 1992, 68, 631.
[30] Harrisona, K. L. A. a. R. G., A computer-controlled Gerdien atmospheric ion counter. REVIEW OF SCIENTIFIC INSTRUMENTS. 2000, 71, p. 3037-3041.
[31] K. Tanaka, T.Y., K. Fukui, The Science and Technology of Carbon Nanotubes. Elsevier Science, 1999. 1 edition.
[32] M. Meyyappan, L.D., Alan Cassell and David Hash, Plasma Sources Sci. Technol., 2003, 12, 205.
[33] R.E. Smalley, M.S.D., Gene Dresselhaus, Phaedon Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications. Springer, 2001. 1 edition.
[34] Stephanie Reich, C.T., Janina Maultzsch Carbon Nanotubes: Basic Concepts and Physical Properties Wiley-VCH, 2004.
[35] Susumu Yoshimura, R. P. H. C., Supercarbon: Synthesis, Properties and Applications (Springer Series in Materials Science), Springer, 1999. 1 edition.
[36] A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy, Phys. Rev. B, 1998, 58, 14013.
[37] C. Li, T.-W. Chou, Phys. Rev. B, 2004, 69, 73401.
[38] J. P. Lu, Phys. Rev. Lett., 1997, 79, 1297.
[39] R. S. Ruoff, D. C. Lorents, Carbon N. Y., 1995, 33, 925.
[40] T. Ozaki, Y. Iwasa, T. Mitani, Phys. Rev. Lett., 2000, 84, 1712.
[41] D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, R. E. Smalley, Appl. Phys. Lett., 1999, 74, 3803.
[42] M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Science, 2000, 287, 637.
[43] B. I. Yakobson, C. J. Brabec, J. Bernholc, Phys. Rev. Lett., 1996, 76, 2511.
[44] W. E. Duncanson, C. A. Coulson, Proc. Phys. Soc. Sect. A, 1952, 65, 825.
[45] G. Overney, W. Zhong, D. Tománek, Zeitschrift für Phys. D Atoms, Mol. Clust., 1993, 27, 93.
[46] C. F. Cornwell, L. T. Wille, Solid State Comm., 1997, 101, 555.
[47] E. Hernandez, C. Goze, P. Bernier, A. Rubio, Phys. Rev. Lett., 1998, 80, 4502.
[48] M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature, 1996, 381, 678.
[49] M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldberg, In Graphite Fibers and Filaments Ch6 (eds U. Gonser, A. Mooradian, K. A. Muller, M. B. Panish and H. Sakaki 120-152), Springer, New York, 1998.
[50] W. Kratschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Nature, 1990, 347, 354.
[51] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science, 1996, 273, 483.
[52] A. M. Rao, E. R., Shunji Bandow, Bruce Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus, Science, 1997, 275, 187.
[53] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassel, H. Dai, Science, 1999, 283, 512.
[54] V. Choudhary, B. P. Singh, R. B. Mathur, Carbon Nanotubes and Their Composites, 2013.
[55] O. Groning, O. M. Kuttel, Ch. Emmenegger et al, J. Vac. Sci. Technol. B, 2000, 18, 665.
[56] M. Nikl, Phys. Stat. Sol., 2000, 179, 595.
[57] R. H. Fowler, L. W. Nordheim, Proceedings of the Royal Society A, 1928, 119, 173.
[58] D . N. K. Ting, A Derivation of the Fowler Nordheim Equation, National University of Singapore, 2008.
[59] G. Fursey, Field Emission in Vacuum Microelectronics, 2005.
[60] S. K. Krane, Introductory Nuclear Physics, 1987.
[61] N. Froman, P. O. Froman, JWKB Approximation. Contribution to the Theory. New-Holland Publishing Company, Amsterdam, 1965.
[62] D. Bohm, Quantum Theory. Prentice-Hall, New York, 1952.
[63] Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, C. T. Lim, V. B. C. Tan, J. T. L. Thong, C. H. Sow, Nanotechnology, 2005, 16, 88.
[64] Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, D. P. Yu, Appl. Phys. Lett., 2005, 86, 203115.
[65] C. Liu, Y. Tong, H. M. Cheng, D. Golberg, Y. Bando, Appl. Phys. Lett., 2005, 86, 223114.
[66] R. C. Smith, J. D. Carey, R. D. Forrest, S. R. P. Silva, J. Vac. Sci. Technol. B, 2005, 2, 23.
[67] X. Q. Wang, M. Wang, P. M. He, Y. B. Xu, Z. H. Li, J. Appl. Phys., 2004, 96, 11.
[68] I. S. Altman, P. V. Pikhitsa, M. Choi, Appl. Phys. Lett., 2004, 84, 1126.
[69] M. Engler, "Hexagonal Boron Nitride (hBN) – Applications from Metallurgy to Cosmetics", 2007.
[70] Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"), 1997, Online corrected version: van der Waals forces, 1994.
[71] M. Kawaguchi et al., Journal of Physics and Chemistry of Solids, 2008, 69, 1171.
[72] R. H. Wentorf, The Journal of Chemical Physics, 1957, 26, 956.
[73] M. S. Silberberg, Chemistry: The Molecular Nature of Matter and Change (5th ed.). New York: McGraw-Hill, 2009, 483.
[74] https://en.wikipedia.org/wiki/Boron_nitride
[75] J. Isberg, J. Hammersberg, E. Johansson, T. Wilkstrom, D.J. Twitchen, A.J. Whitehead, S.E. Coe, G.A. Scarsbrook, Science, 2002, 297, 1670.
[76] M.W. Geis, N.N. Efremow, K.E. Krohn, J.C. Twichell, T.M. Lyszczarz, R. Kalish, J.A. Greer, M.D. Tabat, Nature, 1998, 393, 431.
[77] http://academic.brooklyn.cuny.edu/physics/tung/Schottky/surface.htm
[78] F. Himpsel, J. Knapp, J. Vanvechten, D. Eastman, Physical Review B, 1979, 20, 624.
[79] C. Kimura, T. Yamamoto, S. Funakawa, M. Hirakawa, H. Murakami, T. Sugino, J. Vac. Sci. Technol. B, 2003, 21, 2212.
[80] N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl, Science, 1995, 269, 966.
[81] D. Goldberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima, K. Tamiya, H. Yusa, Chem.Phys. Lett., 1997, 279, 191.
[82] W. Q. Han, W. Mickelson, J. Cumings, A. Zettl, Appl. Phys. Lett., 2002, 81, 1110.
[83] C. Tang, Y. Bando, T. Sato, Chem. Phys. Lett., 2002, 362, 185.
[84] P. Ahmad, M. U. Khandaker, Y. M. Amin, Mater. Manuf. Processes., 2014, 30, 706.
[85] P. Ahmad, M. U. Khandaker, Y. M. Amin, Mater. Sci. Semicond. Process., 2015, 38, 113.
[86] P. Ahmad, M. U. Khandaker, Y. M. Amin, Ceram. Int., 2015, 41, 4544.
[87] P. Ahmad, M. U. Khandaker, Y. M. Amin, Phys. E (Amsterdam, Neth.), 2015, 67, 33.
[88] C, K.W.a.H.M., A chemist’s guide to density-functional theory. Wiley, 2001, 2nd edn.
[89] P. Hohenberg, W. Kohn, Physical Review, 1964, 136, 864.
[90] W. Kohn, L. J. Sham, Physical Review, 1965, 140, 1133.
[91] I. N. Levine, Quantum Chemistry Prentice Hall, 2000, 5th edn.
[92] C. J. Cramer, Essentials of Computational Chemistry: Theories and Models Wiley, 2004, 2nd edn.
[93] I. Martin, Y. M. B., A. F. Morpurgo, Phys. Rev. Lett., 2008, 100, 036804.
[94] E. R. Davidson, Chen. Rev., 1991, 91, 649.
[95] W. Kohn, Physical Review, 1952, 87, 472.
[96] W. Kohn, Physical Review, 1959, 115, 1460.
[97] W. Kohn, Reviews of Modern Physics, 1999, 71, 1253.
[98] W. Kohn, J. M. Luttinger, Physical Review, 1957, 108, 590.
[99] G. Stefan, Journal of Computational Chemistry, 2004, 25, 1463.
[100] W. Kohn, J. M. Luttinger, Physical Review, 1960, 118, 41.
[101] W. Kohn, Y. Meir, D. E. Makarov, Physical Review Letters, 1998, 80, 4153.
[102] N. H. March, Electron Density Theory of Atoms and Molecules. Academic Press., 1992, 24.
[103] J. M. Luttinger, W. Kohn, Physical Review, 1958, 109, 1892.
[104] M. D. L. Segall, P. J. D., M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys.: Condens. Matt., 2002, 12, 2717.
[105] G. J. W. Ackland, M. C., S. J. Clark, J. Phys.: Condens. Matt., 1997, 9, 7861.
[106] J. P. B. Perdew, K., M. Ernzerhof, PRL, 1996, 77, 3865.
[107] E. W. Wong, P. E. Sheehan, C. M. Lieber, Science, 1997, 277, 1971.
[108] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Science, 2000, 287, 637.
[109] M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff, Phys. Rev. Lett., 2000, 84, 5552.
[110] J. M. Bonard, N. Weiss, H. Kind, T. Stöckli, L. Forró, K. Kern, A. Châtelain, Adv. Mater., 2001, 13, 184.
[111] B. Q. Wei, R. Vajtai, P. M. Ajayan, Appl. Phys. Lett., 2001, 79,1172.
[112] D. L. Carroll, P. Redlich, P. M. Ajayan, J. C. Charlier, X. Blase, A. De Vita, R. Car, Phys. Rev. Lett., 1997, 78, 2811.
[113] C. Kim, B. Kim, S. M. Lee, C. Jo, Y. H. Lee, Phys.Rev. B, 2002, 65, 165418.
[114] R. C. Smith, R. D. Forrest, J. D. Carey, W. K. Hsu, S. R. P. Silva, Appl. Phys. Lett., 2005, 87, 013111.
[115] J. M. Bonard, K. A. Dean, B. F. Coll, C. Klinke, Phys. Rev. Lett., 2002, 89, 197602.
[116] J. M. Bonard, F. Maier, T. Stöckli, A. Châtelain, W. A. de Heer, J. P. Salvetat, L. Forró, Ultramicroscopy, 1998, 73, 7.
[117] J. M. Bonard, J. P. Salvetat, T. Stöckli, L. Forró, A. Châtelain, Appl. Phys. A: Mater. Sci.Process., 1999, 69, 245.
[118] J. J. Ding, C. L. Lu, W. K. Hsu, Appl. Phys. Lett., 2011, 99, 033111.
[119] W. A. de Heer, A. Châtelain, D. A. Ugarte, Science, 1995, 270, 1179.
[120] J. M. Bonard, M. Croci, C. Klinke, R. Kurt, O. Noury, N. Weiss, Carbon, 2002, 40, 1715.
[121] J. C. Charlier, M. Terrones, M. Baxendale, V. Meunier, T. Zacharia, N. L. Rupesinghe, W. K. Hsu, N. Grobert, H. Terrones, G. A. J. Amaratunga, Nano Lett., 2002, 2, 1191.
[122] Z. Zhong, J. K. Kang, Mater. Lett., 2007, 3, 7.
[123] V. V. Zhirnov, et al., J. Vac. Sci. Technol., A, Vac. Surf. Film, 1997, 15, 1733.
[124] W. Yi, T. Jeong, et al., Adv. Mater., 2002, 14, 1464.
[125] C. Y. Su, Z. Y. Juang, Y. L. Chen, K. C. Leou, C. H. Tsai, Diamond Relat. Mater., 2007, 16, 1393.
[126] J. B. Yoo, J. H. Han, S. H. Choi, T. Y. Lee, C. Y. Park, T. W. Jeong, J. H. Lee, S. Yu, G. Park, W. K. Yi, H. S. Kim, Y. J. Baik, J. M. Kim, Phys. B (Amsterdam, Neth.), 2002, 323, 180.
[127] W. Han, Y. Bando, K. Kurashima, T. Sato, Appl. Phys. Lett., 1998, 73, 3085.
[128] D. Golberg, Y. Bando, K. Kurashima, T. Sato, Solid State Communications, 2000, 116, 1.
[129] Y. Bando, D. Golberg, M. Mitome, K. Kurashima, T. Sato, Chemical Physics Letters, 2001, 346, 29.
[130] T. Sugino, S. Kawasaki, K. Tanioka, J. Shirafuji, Applied Physics Letters, 1997, 71, 2704.
[131] N. Park, S. Han, J. Ihm, Journal of Nanoscience and Nanotechnology, 2003, 3, 179.
[132] W. C. Oh, F. J. Zhang, M. L. Chen, J. Ind. Eng. Chem., 2010, 16, 321.
[133] S. Chao, Z. Lu, Z. Bai, Q. Cui, J. Qiao, Z. Yang, L. Yang, Int. J. Electrochem. Sci., 2013, 8, 8786.
[134] S. Delpeux, F. Beguin, R. Benoit, R. Erre, N. Manolova, I. Rashkov, Eur. Polym. J., 1998, 34, 905.
[135] A. Essafti, C. Gómez-Aleixandre, J. L. G. Fierro, M. Fernández, J. M. Albella, J. Mater. Res., 1996, 11, 2565.
[136] L. Ramqvist, K. Hamrin, G. Johansson, A. Fahlman, C. Nordling, J. Phys. Chem. Solids, 1969, 30, 1835.
[137] C. Gómez-Aleixandre, A. Essafti, J. M. Albella, J. Phys. Chem. B, 2000, 104, 4397.
[138] H. Araki, T. Katayama, K. Yoshino, Appl. Phys. Lett., 2001, 79, 2636.
[139] G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, Y. Li, Nano Lett., 2011, 11, 3026.
[140] C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen, L. J. Chen, J. Phys. Chem. C, 2009, 113, 2286.
[141] Y. F. Li, C. I. Hung, C. C. Li, W. Chin, B. Y. Wei, W. K. Hsu, J. Mater. Chem., 2009, 19, 6761.
[142] J. M. Green, L. Dong, T. Gutu, J. Jiao, J. F. Conley, Y. Ono, J. Appl. Phys., 2006, 99, 094308.
[143] C. W. Chen, M. H. Lee, Y. T. Lin, Appl. Phys. Lett., 2006, 89, 223105.
[144] H. S. Uh, S. Park, B. Kim, Diamond Relat. Mater., 2010, 19, 586.
[145] W. K. Yi, T. W. Jeong, S. G. Yu, J. N. Heo, C. S. Lee, J. H. Lee, W. S. Kim, J. B. Yoo, J. M. Kim, Adv. Mater., 2002, 14, 1464.