簡易檢索 / 詳目顯示

研究生: 郭晉安
Kuo, Chin-An
論文名稱: 應用於 CMOS 電容式光聲照相機之峰值感測器電路設計與實作
Design and Implementation of a Peak Detection Circuit for a CMOS Capacitive Photoacoustic Camera
指導教授: 盧向成
Lu, Shiang-Cheng
口試委員: 黃柏鈞
Huang, Po-Chiun
李夢麟
Li, Meng-Lin
盧向成
Lu, Shiang-Cheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 89
中文關鍵詞: CMOSMEMS電容式超音波傳感器二維快速光聲成像峰值感測電路
外文關鍵詞: Peak Detection Circuit, CMOS MEMS Ultrasonic Transducer, 2-D fast Photoacoustic Imaging
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇研究提出適用於二維陣列之 CMOS MEMS 製程技術所製
    作的微電容式超音波傳感器之峰值感測電路(Peak Detection Circuit),
    在傳感器接收到超音波並轉換為電壓訊號後放大並取樣峰值,循序輸
    出後可由軟體二維光聲成像。相較於傳統三維成像具有快速、適用小
    規模像素面積與高度晶片整合性的特性。

    在傳統三維光聲成像的量測環境中,晶片上每一像素收到物體被
    雷射激發後的超音波類比訊號,類比波型包含了超音波發射源的軸向、
    側向、縱向資訊,但須藉由多個像素收到的超音波訊號及發射時間來
    運算出發射源的位置,在建立三維模型的掃描時間與後續成像複雜度
    較高;若使用峰值保持器將類比波型轉換為輸出峰值,則可以利用此
    單純之二維數值表反向運算物體模型,複雜度較低且快速成像。

    實驗成功的證明了在輸入頻率為 1 MHz 至 10 MHz ,振幅為
    100 mVpp 至 800 mVpp 的弦波及方波,峰值感測電路可以正確的輸
    出峰值,誤差值在± 20% 之內;當輸入振幅在 200 mVpp ~ 600 mVpp
    範圍中,誤差值更可以改善至 ± 15%。

    若峰值感測電路採用更先進之製程將可提升電路性能與減少峰值
    誤差,將可提升影像解析度,於醫療將有更大應用。


    The research focuses on the study of a peak detection circuit which is used
    in a two-dimensional (2-D) capacitive ultrasonic sensor array implemented in a
    standard CMOS process. Ultrasonic waves produced by the photoacoustic
    effect are received by the sensing pixels, followed by signal amplification, peak
    detection, and collection of all the detected values to produce a 2-D
    photoacoustic image. Compared to 3-D imaging, the required time for image
    production is significantly reduced. The CMOS MEMS technology allows
    convenient signal processing to enhance scalability of the array and sensor
    miniaturization to increase image resolution.

    In the traditional 3-D Photoacoustic Imaging (PAI), every sensing pixel
    receives the ultrasound from the object illuminated by laser. The produced
    waveform contains the axial, lateral, and depth information of the object. We
    have to obtain many waveforms from other pixels so as to identify the position
    of emitter origin, where the complexity is higher than 2-D imaging. 2-D
    imaging is less complicated and faster because it depends on the peak-value
    detection of the sensed waveforms.

    In the experiment we successfully detect and hold the peak values by using
    input signals with frequencies from 1 MHz to 10 MHz and amplitudes from
    100 mVpp to 800 mVpp. The errors are within ±20%. The errors reduce to less
    than ±15% when input voltage is from 200 mVpp to 600 mVpp.

    The peak detection circuit design can benefit from the use of a more
    advanced CMOS process to enhance the circuit speed and reduce the detection
    error; in other words, a better image resolution can therefore be achieved.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 簡介 1 1.2 研究動機 3 1.2 互補式金氧半導體微機電系統簡介 8 1.3 相關文獻回顧 11 第二章 超音波感測器晶片之設計與模擬 18 2.1 電容式超音波感測原理 18 2.2 光聲成像原理 21 2.3 電容感測薄膜設計與模擬 25 2.4 後製程程序(濕蝕刻製程) 26 2.5 晶片架構 30 2.6 電路規格制定與設計 32 2.6.1 運算放大器電路 34 2.6.2 電壓緩衝器電路 42 2.6.3 峰值感測電路 48 2.6.4 比較器電路 54 2.6.4 多重選擇器電路 70 2.6.5 晶片佈局 70 第三章 實驗與量測結果 72 3.1 後製程結果 72 3.2 電路量測 74 3.2.1 峰值偵測保持器量測結果與討論 74 第四章 結論與未來工作 82 4.1 結論 82 4.2 未來工作 82 參考文獻 86

    [1]X. Wang, et al. “Photoacoustic tomography of biological tissue with
    high cross-section resolution: reconstruction and experiment.”
    Medicine Physics, vol. 29, pp. 2799–2805, 2002.
    [2]F L. Lizzi, M. Greenebaum, J.F. Ernest, M. Elbaum, and D. J.
    Coleman, "Theoretical framework for spectrum analysis in ultrasonic
    tissue characterization", Journal of the Acoustical Society of America,
    vol.73, pp. 1366, 1983.
    [3]M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,”
    Review of Scientific Instruments, vol. 77, no. 4, art. no. 041101, pp.
    041101–041101-22, 2006.
    [4]A.G.Bell, “On the production and reproduction of sound by
    light,”American Journal of Science, vol. 20, pp. 305–324, 1880.
    [5]X. D. Wang, Y. J. Pang, and G. Ku et al., "Noninvasive laser-induced
    photoacoustic tomography for structural and functional in vivo
    imaging of the brain," Nature Biotechnology, vol. 21, no. 7, pp. 803–
    806, Jul, 2003.
    [6]M. L. Li, P. H. Wang, P. L. Liao, and M. S.-C. Lu, “Three dimensional
    photoacoustic imaging by a CMOS micromachined capacitive
    ultrasonic sensor,” IEEE electron device letters, vol. 32, no. 8, pp.
    1149–1151, 2011.
    [7]Y. Wei, Z. Tang, X. Chen, Y. He, and H. Liu, "Fast photoacoustic
    tomography by use of acoustic lens", Journal of Physics, Conference
    Series, pp. 277 012039, 2011.
    [8]H.S. Tzou and C.I. Tseng, "Distributed piezoelectric sensor/actuator
    design for dynamic measurement/control of distributed parameter
    systems: A piezoelectric finite element approach", Journal of Sound
    and Vibration, vol.138, pp. 17–34, 1990.
    [9]M. I. Haller and B. T. Khuri-Yakub, “A surface micromachined
    87
    electrostatic ultrasonic air transducer,” IEEE Trans, Ultrasonics,
    Ferroelectrics and Frequency Control,vol. 43, no. 1, pp. 1–6, 1996.
    [10]K. Suzuki, K. Higuchi, and H. Tanigawa, ”A silicon electrostatic
    ultrasonic transducer,” IEEE Trans, Ultrasonics, Ferroelectrics and
    Frequency Control, vol.36, no. 6, pp. 620–27, 1989.
    [11]S. Vaithilingam, T.-J. Ma, Y. Furukawa, I O. Wygant, X. Zhuang, A.
    de la Zerda, Ö. oralkan, A. Kamaya, S. S. Gambhir, R. B. Jeffrey, and
    butrus T. Khuri-yakub, “Three-dimensional photoacoustic imaging
    ssing a two-dimensional CMUT array”, IEEE Trans, Ultrasonics,
    Ferroelectrics and Frequency Control, vol. 56, no.11, pp. 2411–2419,
    2009.
    [12]A.S. Ergun, Y. Huang, X. Zhuang, O. Oralkan, G.G. Yarahoglu, and
    B.T. Khuri-Yakub, "Capacitive micromachined ultrasonic transducers:
    fabrication technology," IEEE Trans, Ultrasonics, Ferroelectrics and
    Frequency Control, vol. 52, no. 12, pp. 2242–2258, 2005.
    [13]D.-S. Lin, X. Zhuang, S. H. Wong, M. Kupnik, and Butrus Thomas
    Khuri-Yakub, “Encapsulation of Capacitive Micromachined
    Ultrasonic Transducers Using Viscoelastic Polymer”, IEEE Trans,
    Ultrasonics, Ferroelectrics and Frequency Control, vol. 56. No.11, pp.
    1341–1351, 2009.
    [14]H. Zhang, T. Zhile, Y. He, L.Guo, "Two dimensional photoacoustic
    imaging based on an acoustic lens and the peak-hold technology",
    Review of Scientific Instruments, vol. 78, pp. 064902–064902-4,
    2007.
    [15]Y. Wei, Z. Tang, H. Zhang, Y. He, and H. Liu, "Two dimensional
    photoacoustic imaging based on an acoustic lens and the peak-hold
    technology", Optics Express, vol. 16, pp. 5314–5319, 2008.
    [16]X. Fang, C. Hu-Guo, D. Brasse. Y. Hu, "Design of a high accuracy
    multi-channel analog CMOS peak detect and hold circuits for
    APDBased PET imaging", IEEE Trans., Biomedical Circuits and
    Systems, vol. 5, pp. 90–99, 2011.
    88
    [17]L. R. F. Rose, “Point-source representation for lase-generated
    ultrasound”, Journal of the Acoustical Society of America, vol. 75, pp.
    723, 1984.
    [18] Lihong V. Wang, "Tutorial on photoacoustic microscopy and
    computed tomography," IEEE Journal of selected topics in quantum
    electronics, vol. 14, no. 1, pp. 171–179, 2008.
    [19]G. C. Wetsel, “Photothermal generation of thermoelastic waves in
    composite media,” IEEE Trans, Ultrasonics, Ferroelectrics and
    Frequency Control, vol. 33, pp. 450–461, 1986.
    [20]F. A. McDonald, “Practical quantitative theory of photoacoustic pulse
    generation,” Applied Physics Letters, vol. 54, pp. 1504–1506, 1989.
    [21]S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S.
    Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS
    imaging catheter,” IEEE Trans, Ultrasonics, Ferroelectrics and
    Frequency Control, vol. 54, no. 5, pp. 978–986, 2007.
    [22]A.S. Ergun, Y. Huang, X. Zhuang, O. Oralkan, G.G. Yarahoglu, and
    B.T. Khuri-Yakub, "Capacitive micromachined ultrasonic transducers:
    fabrication technology," IEEE Trans, Ultrasonics, Ferroelectrics and
    Frequency Control, vol. 52, no. 12, pp. 2242–2258, 2005.
    [23]G.-C. Wei and M. S.-C. Lu, “Design and characterization of a CMOS
    MEMS capacitive resonant sensor array,” Journal of Micromechanics
    and Microengineering, vol. 22, pp. 125030, 2012.
    [24]M.-H. Chen and M. S.-C. Lu, "Design and characterization of an
    air-coupled capacitive ultrasonic sensor fabricated in a CMOS
    process," Journal of Micromechanics and Microengineering, vol. 18,
    pp. 015009, 2008.
    [25]P. K. Tang, B. H. Wang, M. L. Li, and M. S.-C. Lu, “Design and
    characterization of the immersion-type capacitive ultrasonic sensors
    fabricated in a CMOS process,” Journal of Micromechanics and
    Microengineering, vol. 21, no. 2, pp. 025013, 2011.
    89
    [26]X.C. Jin, I. Ladabaum, and B.T. Khuri-Yakub, "The microfabrication
    of capacitive ultrasonic transducers," Journal of
    Microelectromechanical Systems, vol.7, no.3, pp. 295–302, 1998.
    [27]B. T. Khuri-Yakub, and O. Oralkan, "Capacitive micromachined
    ultrasonic transducers for medical imaging and therapy," Journal of
    Micromechanics and Microengineering, vol. 21, no. 5, pp. 54004–15,
    2011.
    [28]I. Wygant, X. Zhuang, D. Yeh, Ö. Oralkan, A. S. Ergun, M. Karaman,
    and B. T. Khuri-Yakub, "Integration of 2D CMUT arrays with
    front-end electronics for volumetric ultrasound imaging," IEEE Trans,
    Ultrasonics, Ferroelectrics and Frequency Control, vol. 55, no. 2, pp.
    327–342, 2008.
    [29]Ö. Oralkan, S. Ergun, JA. Johnson, M. Karaman, U. Demirci, K.
    Kaviani, TH. Lee, and Khuri-Yakub BT, “Capacitive micromachined
    ultrasonic transducers: next generation arrays for acoustic imaging?”,
    IEEE Trans, Ultrasonics, Ferroelectrics and Frequency Control, vol.
    49, pp. 1596–1610, 2002.
    [30]T. Buma, M. Spisar, and M. O’Donnell, "A high-Frequency, 2-D
    array element using thermoelastic expansion in PDMS", IEEE Trans,
    Ultrasonics, Ferroelectrics and Frequency Control, vol. 50, no. 9, pp.
    1161–1176, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE