簡易檢索 / 詳目顯示

研究生: 黃彥豪
Huang, Yen-Hao
論文名稱: AIDCN在銀和鋁基底上的介面結構的光電子能譜研究
Study of the Interfacial Structure of AIDCN/Ag and AIDCN/Al by Ultraviolet Photoemission Spectroscopy
指導教授: 唐述中
Tang, Shu-Jung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 98
語文別: 英文
論文頁數: 87
中文關鍵詞: 有機雙穩態材料有機材料光電子能譜
外文關鍵詞: photoemission spectroscopy, AIDCN, Ag, Al
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機雙穩態材料AIDCN(2-amino-4,5-imidazoledicarbonitrile)
    為2004年發表的第一個有機雙穩態元件的材料,其工作原理仍然存在許多爭議。有機雙穩態元件的工作表現與電極有很大的關聯,目前研究顯示AIDCN以銀替代鋁為電極使得電流-電壓特性曲線在NDR(negative differential resistance)區域較穩定,論文所使用
    的有機材料為AIDCN。
    我們在新竹的國家同步輻射研究中心的 BL-08A 實驗站成功的在矽(111)上製備有機分子材料AIDCN蒸鍍於銀和鋁的表面,藉由同步輻射光電子能譜(synchrotron-radiation photoemission spectroscopy)研究其介面變化。實驗中所取得能譜的能量範圍為136電子伏特。根據價帶能譜,我們發現AIDCN/Ag在低薄膜厚度時AIDCN可以均勻平躺的成長在銀表面上,在高薄膜厚度時分子排列與低薄膜時的分子排列不同,在價帶能譜所顯示低厚度與高厚度之間最高已填滿軌域的能量差為0.5電子伏特,電洞注射位能障約0.2電子伏特。然而AIDCN/Al在低薄膜厚度時沒有可觀察到的最高已填滿軌域,原因可能是因為ADICN分子是凌亂的生長在鋁表面。因為這個原因使得靠近費米能階0.7電子伏特的部份有額外的電子態出現,即電洞注射位能障在相同厚度時相對於銀較小。


    The electronic structures of interface between an organic bistable material 2-amino-4,5-imidazoledicarbonitrile (AIDCN) and electrode metal surfaces (Ag and Al) were investigated by ultraviolet photoemission spectroscopy. The electrical bistability strongly depends on metal electrodes, and the working mechanism is still controversial. The photoemission spectra of the highest occupied molecular orbital (HOMO) of AIDCN on Ag and Al substrate and the corresponding vacuum level (VL) shift are investigated in this thesis. The thickness dependence of VL shift shows a dip in both systems. In AIDCN/Ag system, the HOMO peak shows two-component line shape, which can be divided into the contributions from the monolayer state and mutilayer state. In AIDCN/Al system, a diffuse tailing structure was observed below Fermi edge (~1 eV), and attributed to random molecular orientation. The tailing structure causes lower hole injection barrier than Ag surface (~2 eV). Angle dependence photoemission data also infer different growth mechanism for AIDCN/Ag and AIDCN/Al interfaces.
    For AIDCN/Ag, the intensity of HOMO peak increases with increasing incident angle for monolayer coverage, indicating that the pi bonds are normal to Ag surface according to the symmetry selection rule. In multilayer region, the AIDCN dipole moment orients at a certain angle with respect to surface normal on top of monolayer AIDCN. For AIDCN/Al, of the HOMO peak (and also the other peaks) is absent for 2.99 nm-thick AIDCN film on Al. As increasing AIDCN thickness, angular dependence of the HOMO peak gradually generated and it finally became similar to the bulk-like behavior, where the HOMO intensity shows a local maximum representing formation of the bulk phase. We also examined the AIDCN/Al2O3 system by dosing 11000 L oxygen on clean Al surface. The HOMO peak of AIDCN thin film is observed at lower coverage than that for AIDCN/Al. The hole injection barriers from Ag and Al to AIDCN were estimated to be 1.6 and 0.7 eV,
    respectively.

    1 Introduction 1.1 Introduction to OBD 1.2 Motivation 2 Background 5 2.1 Mechanism of OBD 2.1.1 Switching Behavior of OBD 2.1.2 Mechanism of OBD 2.2 Photoemission Spectroscopy 2.2.1 Introduction 2.2.2 Photoemission Process 2.2.3 X-ray Photoelectron Spectroscopy 2.2.4 Photoemission Spectra 2.2.5 Inelastic Mean Free Path and Universal Curve 2.2.6 Excitation of Molecules and Symmetry of Initial States 2.3 Interface Energy Level of metal and organic 2.3.1 Energy Level Alignment at Interface 2.3.2 Metal and Organic Interfacial Interaction Model 2.4 AIDCN molecular orbital 3 Experimental Instruments and Techniques 3.1 Ultrahigh vacuum technology 3.1.1 Background 3.1.2 UHV Instrument 3.1.3 Pumping Procedure 3.2 Hemispherical electron analyzer 3.2.1 Operation Mode 3.2.2 Resolution 3.3 Synchrotron Radiation 3.3.1 Beam-line specifications 3.4 UHV Evaporator 3.4.1 EFM3 Evaporator 3.4.2 Miniature K-cell Evaporator 3.5 Instrument setup 3.5.1 Sample Preparation 3.5.2 Determination of film thickness 4 AIDCN on metal system 54 4.1 AIDCN on silver 4.1.1 Energy alignment 4.1.2 Molecular orientation 4.2 AIDCN on aluminium 4.2.1 Energy alignment of AIDCN/Al and AIDCN/Al2O3 4.2.2 Molecular orientation 5 Conclusion

    [1] Szymanski, A., Larson, D. C. and Labes, M. M., (1969).
    A Temperature-independent Conducting State in Tetracene
    Thin Film. Applied Physics Letters 14, 88
    [2] Ma, L., Liu, J. and Yang, Y., (2002). Organic
    Electrical Bistable Devices and Rewritable Memory
    Cells. Applied Physics Letters 80, 2997
    [3] Ma, L., Pyo, S., Ouyang, J. Xu, Q. and Yang, Y.,
    (2003). Nonvolatile Electrical Bistability of
    Organic/metal-nanocluster/organic System. Applied
    Physics Letters 82, 1419
    [4] Bozano, L. D., Kean, B. W., Beinho®, M., Carter, K. R.,
    Rice, P. M. and Scott, J. C., (2005). Organic Materials
    and Thin-Film Structures for Cross-Point Memory Cells
    Based on Trapping in Metallic Nanoparticles. Advanced
    Functional Materials 15, 1933
    [5] Bozano,L. D., Kean, B. W. Deline, V. R. Salem, J. R.
    and Scott, J. C., (2004). Mechanism for Bistability in
    Organic Memory Elements. Applied Physics Letters 84, 607
    [6] He, J., Ma, L., Wu, J. and Yang, Y., (2005). Three-
    terminal Organic Memory Devices. Journal of Applied
    Physics 97, 064507
    [7] Terail, M., Fujita, K. and Tsutsui, T., (2007).
    Materials Research Society, 965,1010
    [8] Scott, J. C. and Bozano, L. D., (2007). Nonvolatile
    Memory Elements Based on Organic Materials. Advanced
    Materials 19, 1452
    [9] Kondo, T., Lee, S. M. Malicki, M., Domercq, B., Marder,
    S. R., and Kippelen, B., (2008). A Nonvolatile Organic
    Memory Device Using ITO Surfaces Modified by Ag-
    Nanodots. Advanced Functional Materials 18, 1112
    [10] chen, J., Ma, D., (2005). Single-layer Organic Memory
    Devices Based on N,N-di(naphthalene-l-yl)-N,N-diphenyl-
    benzidine. Applied Physics Letters 87,023505
    [11] Bozano, L. D., Kean, B. W., Deline, V. R., Salem, J.
    R., and Scott, J. C., (2004). Mechanism for
    Bistability in Organic Memory Elements. 84,607
    [12] Chu, C. W., Ouyang, J., Tseng, J. H., and Yang, Y.,
    (2005). Organic Donor-Acceptor System Exhibiting
    Electrical Bistability for Use in Memory Devices.
    Advanced Materals 17, 1440
    [13] Laurent, C., Kay, E., and Souag, N., (1988).
    Dielectric Breakdown of Polymer Films Containing Metal
    Clusters. Journal of Applied Physics 64, 336
    [14] Yang, Y., Ouyang, J., Ma, L., Tseng, R. J. H., and
    Chu, C. W., (2006). Electrical Switching and
    Bistability in Organic/Polymeric Thin Films and Memory
    Devices. Advanced Functional Materials 16, 1001
    [15] Ouyang, J., Chu, C. W. Tseng, R. J., Prakash, A., and
    Yang, Y., (2005). Organic Memory Device Fabricated
    Through Solution Processing. Proceedings of the IEEE
    93, 1287
    [16] Terai, M., Fujita, K., and TsuTsui, T., (2006).
    Electrical Bistability of Organic Thin-Film Device
    Using Ag Electrode. Japanese Journal of Applied
    Physics 45, 3754
    [17] Hanfer, S., (2003). Photoelectron Spectroscopy
    Principles and Applications (3rd ed.). Berlin
    Heicelberg: Springer-Verlag
    [18] Nefedov, V. I., (1988). X-ray Photoelectron
    Spectroscopy of Solid Surfaces (1st
    ed.). Utrecht, The Netherlands:VSP
    [19] Watts, J. F., Wolstenholme, J., An Introduction to
    Surface Analysis by XPS and AES (1st ed.). England
    West Sussex:John Wiley
    [20] Seah, M. P., Dench, W. A., (1979). Quantitative
    Electron Spectroscopy of Surface: A standard data base
    for Electron Inelastic Mean Free Paths in Solids.
    Surface and Interface Analysis 1, 11
    [21] Ishii, H., Sugiyama, K., Ito, E. and Seki, K., (1999).
    Energy Level Alignment and Interfacial Electronic
    Structures at Organic/Metal and Organic/Organic
    Interfaces. Advanced Materials 11, 605
    [22] Braun, S., Salaneck, R. and Fahlman, M., (2009).
    Energy-Level Alignment at Organic/Metal and
    Organic/Organic Interfaces. Advanced Materials 21, 1450
    [23] V¶azquez, h., Dappe, Y. J. Ortega, J. and Flores, F.,
    (2007). Energy Level Aligment at Metal/Organic
    Semiconductor Interfaces: "Pillow" Effect, induced
    Density of Interface states, and Charge Neutrality
    Level. The Journal of Chemical Physics
    [24] LÄuth, H. (1995). Surfaces and Interfaces of Solid
    Materials (3rd ed.)., Berlin Hidelberg: Springer-Verlag
    [25] Plummer, E. W. and Eberhardt W., (). Angle Resolved
    Photoemission As a Tool for The Study of Surfaces
    [26] Lang, N. D. (1981). Physical Review Latters 3 1215
    [27] Tengstedt, C., Osikowicz, W., Salaneck W. R., Parker,
    D., Hsu, C. H. and Fahlman, M. (2006). Fermi-level
    Pinning at Conjugated Polymer Interfaces. Applied
    Physics Letters 88, 053502
    [28] V¶azquez, H., Flores, F. and Kahn, A. (2007). Induced
    Density of States Model for Weakly-interacting Organic
    Semiconductor Interfaces. Organic Electronics 8, 241
    [29] Braun, S., John, M. P., Osikowicz, W. and Salaneck,
    W . R. (2007). In°uence of the ElectrodeWork Function
    on the Energy Level Alignment at Organic-organic
    Interfaces Applied Physics Letters 91, 202108
    [30] Crispin, X., Geskin, V., Crispin, A., Cornil, J.,
    Lazzaroni, R., Salaneck, W. R. and Br¶edas J. L.
    (2002). Characterization of the Interface Dipole at
    Organic/Matel Interfaces. Journal of American Chemical
    Society 124, 8131
    [31] Chen, J., Reed, M. A. Rawlett, A. M. and Tour, J. M.
    (1999). Large On-Off Ratio and Negative Differential
    Resistance in a Molecular Elestronic Device.
    Science 286, 1550
    [32] Fukagawa, H., Yamane, H., Kera, S., and Okudaira, K.
    K., and Ueno, N., (2006) Expermental Estimation of the
    Electric Dipole and Polarizability of Titany
    phthalocyanine Using Ultraviolet Photoelectron
    Spectroscopy. Physical Review B 73, 041302
    [33] Kera, S., Fukagawa, H., Kataoka, T., Hosoumi, S.,
    Yamane, H., and Ueno, N., (2007) Spectroscopic
    Eviendence os Strong pi-pi Interorbital Interaction in
    a Lead-phthalocyanine Bilayer Film Attributed to the
    Dimer Nanostructure. Physical Review B 75, 121305
    [34] Wertheim, G. K., DiCenzo, S. B., and Buchanan, D. N.
    E., (1986) Noble and Transition-metal Clusters: The d
    bands of Silver and Palladium. Physical Review B 33,
    5384
    [35] Ishii, H., Morikawa, E., Tang, S. J., Youshimura, D.,
    Ito, E., Okudaira, K., Miyamae, T., Hasegawa, S.,
    Sprunger, P. T., Ueno, N., Seki, K. and Saile,
    V., (1999) Electronic Structure and Molecular
    Orientation of Well-ordered Polethylene Oligomer (n ¡
    C44H90) on Cu(100) and Au(111) Surfaces Studied by
    UV Photoemission and Low Energy Electron Diffraction.
    Journal of Electron Spectroscopy and Related Phenomena
    101, 559
    [36] Morikawa, E., Saile, S., Okudaira, K. K., Azuma, Y.,
    Meguro, K., Harada, Y., Seki, K., Hasegawa, S., and
    Ueno, N., (2000) Pendant Group Prientation of Poly (2-
    Vinylnaphthalene) Thin Film Surface Studied by Near-
    edge X-ray Adsorption Fine Structure Spectroscopy
    (NEXAFS) and Angle-Resolved Uitraviolet Photoelectron
    Spectroscopy (ARUPS). Journal of Chemical Physics 112,
    10476
    [37] Ueno, N., Fujimoto, H., Sate, N., Seki, K., and
    Inokuchi, H., (1990) Angle Resolved Photoemission from
    Oriented Thin Films of Long Alkyl Molecules: Valence
    Band Dispersion. Physica Scripta 41, 181
    [38] Kano, M., Orito, S., Tsuruoka, Y., and Ueno, N.,
    (2005) Nonvolatile Effect of an Al/2-Amino-4,5-
    dicyanoimidazole/Al Structure. Synthetic Metals 153,
    265
    [39] Ueno, N., Kera, Satoshi., Sakamoto, Kazuyuki., and
    Okudaira, K. K., (2008) Energy Band and Electron-
    vibration Coupling in Organic Thin Films:
    Photoelectron Spectroscopy as a Powerful Tool for
    Studying the Charge Transport. Applied Physics A 92,
    495
    [40] Faraci, G., La Rosa, S., Pennisi, A. R., Hwu, Y., and
    Margaritondo, G., (1993) Evidance for a new Aluminum
    Oxcidation State. Physical Review B 47, 4052
    [41] Berg, C., Raaen, S., and Borg, A., (1993) Observation
    of a Low-binding-energy Peak in the 2p Core-level
    Photoemission from Oxidized Al(111). Phycical Review B
    47, 13063
    [42] He, J., Ma, L., Wu, J., and Yang, Y., (2005)
    Threetrrminal Organic Memory Devices. Journal of
    Applied Physics 97, 064507
    [43] Bianconi A., Bachrach R. Z., Hagstrom S. B. M., and
    FlodstrÄom S. A., (1979) Al-Al2O3 Interface Study
    Using Surface Soft-x-ray Adsorption and Photoemission
    Spectroscopy. Phycical Review B 19, 6
    [44] Berg, C., Raaen, S., Borg, A., Anderson, J. N.,
    Lundgren, E., and Nyholm, R., (1993) Observation of a
    Low-binding-energy Peak in the 2p core-level
    Photoemission from Oxidized Al(111). Phycical Review B
    47, 13063
    [45] Kahn, A., Koch N., and Gao, W., (2003) Electronic
    Structure and Elcectrical Properties of Interfaces
    between Metals and ¼-Conjugated Molecular Films.
    Electrical Properties of Interface 41, 2529
    [46] Uhrberg, R. I. G., Kaurila, T. Chao, Y. C., (1998) Low-
    temperature Photoemission Study of the Surface
    Electronic Structure of Si(111)7*7. Phycical Review
    B 58, 1731
    [47] http://www.srrc.gov.tw/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE