研究生: |
林祥源 Lin, Siang-Yuan |
---|---|
論文名稱: |
利用超環面儀器探究希格斯粒子衰變至雙 W 玻色子機制中的量子糾纏效應 Studies on quantum entanglement in the H → WW∗ channel with the ATLAS detector |
指導教授: |
徐百嫻
Hsu, Pai-Hsien |
口試委員: |
曾柏彥
Tseng, Po-Yen 陳凱風 Chen, Kai-Feng |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 103 |
中文關鍵詞: | 量子糾纏 、機器學習 、希格斯玻色子 、超環面儀器 、大強子對撞機 、對撞機物理 |
外文關鍵詞: | Quantum Entanglement, Machine Learning, Higgs Boson, ATLAS, Large Hadron Collider, Collider Physics |
相關次數: | 點閱:7 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
糾纏現象是量子物理的核心特性,此奇妙之機制顛覆了我們對於定域性以及現實的理解。
傳統的量子糾纏實驗的能量尺度多位在原子、分子物理等級;然而,我們亦對於此機制在高能尺度之下的行為感興趣。
本論文使用超環面儀器的模擬數據,呈現在 H → WW∗ → eνμν 頻道中的量子糾纏現象之初步研究。
此研究專注於膠子融合機制下生成的標準模型希格斯玻色子,以及其在標準模型質量下的次大衰變頻道。
利用標準模型希格斯玻色子的純量特性與弱交互作用的向量流—贗向量流耦合結構,我們透過最終態輕子之投影量測進行CGLMP 不等式型式之貝爾定理的實驗驗證。
在真值完備的條件下,我們首先分析了與量子糾纏相關之可觀測量在系統中的期望值與分佈,接著探討實驗上必要的篩選條件所導致的影響。
在擬真情況下,為了重建中間態希格斯玻色子與 W 玻色子對之靜止座標系,我們必須克服最終態微中子所造成的運動資訊缺失。
本論文提出了兩種重建中間態粒子四動量的方法:一為解析近似法,二為神經網路回歸模型。
本研究結果顯示,相較於解析近似法,神經網路回歸模型表現上顯著為優。
最後,我們分析了利用神經網路回歸模型估計數值所導出的量子糾纏可觀測量之結果。
Entanglement is an intriguing phenomenon at the heart of quantum physics that challenges locality and our understanding of reality.
While traditional experiments on quantum entanglement are usually conducted at the energy scale of atomic and molecular physics, we are also interested in probing such phenomena at the high energy scale.
This thesis presents a preliminary study of quantum entanglement in the H → WW∗ → eνμν channel using simulation data from the ATLAS experiment.
Our study focuses on the dominant gluon-gluon fusion production mode of the Standard Model Higgs boson and its second-greatest decay channel at the Standard Model mass.
Exploiting the scalar property of the Standard Model Higgs boson and the V−A structure of weak interactions, we perform Bell tests using the CGLMP inequality via projective measurements of the final state leptons.
At the truth level, we first analyze the ensemble averages and distributions of observables relevant to the entanglement study, then investigate the effects of experimental selections. In practical application, we must overcome the missing kinematic information due to neutrinos in the final state in order to reconstruct the rest frames of the Higgs and both W bosons.
This thesis presents two approaches to reconstructing four-momenta of intermediate particles: an analytical approximation method and a neural network regression model.
Our findings show that the neural network regression model significantly outperforms analytical approximations.
Finally, we analyze the results of the entanglement observables calculated using predictions from the proposed neural network regression model.
[ 1] C. S. Wu et al. "Experimental Test of Parity Conservation in Beta Decay".
In: Physical Review 105.4 (Feb. 15, 1957).
Publisher: American Physical Society, pp. 1413–1415.
[ 2] Peter W. Higgs. "Broken Symmetries and the Masses of Gauge Bosons".
In: Physical Review Letters 13.16 (Oct. 19, 1964).
Publisher: American Physical Society, pp. 508–509.
[ 3] F. Englert and R. Brout. "Broken Symmetry and the Mass of Gauge Vector Mesons".
In: Physical Review Letters 13.9 (Aug. 31, 1964).
Publisher: American Physical Society, pp. 321–323.
[ 4] Sheldon L. Glashow. "The renormalizability of vector meson interactions".
In: Nuclear Physics 10 (Feb. 1, 1959), pp. 107–117.
ISSN: 0029-5582.
[ 5] Steven Weinberg. "A Model of Leptons".
In: Physical Review Letters 19.21 (Nov. 20, 1967).
Publisher: American Physical Society, pp. 1264–1266.
[ 6] Abdus Salam and J. C. Ward. "Weak and electromagnetic interactions".
In: Il Nuovo Cimento (1955-1965) 11.4 (Feb. 1, 1959), pp. 568–577.
ISSN: 1827-6121.
[ 7] S. M. Bilenky and J. Hošek. "Glashow-Weinberg-Salam theory of electroweak interactions and the neutral currents".
In: Physics Reports 90.2 (Oct. 1, 1982), pp. 73–157.
ISSN: 0370-1573.
[ 8] Wikimedia Commons. Standard model of elementary particles. Sept. 17, 2019.
URL: https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg .
[ 9] LHCHWGCrossSectionsFigures < LHCPhysics < TWiki.
URL: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHWGCrossSectionsFigures .
[10] Esma Mobs. "The CERN accelerator complex in 2019. Complexe des accélérateurs du CERN en 2019".
In: (2019).
[11] The ATLAS Collaboration et al. "The ATLAS Experiment at the CERN Large Hadron Collider".
In: Journal of Instrumentation 3.8 (Aug. 2008), S08003.
ISSN: 1748-0221.
[12] Riccardo Maria Bianchi and ATLAS Collaboration. "ATLAS experiment schematic or layout illustration". 2022.
[13] Deb Sankar Bhattacharya and on behalf of the ATLAS Muon Collaboration. "The Micromegas chambers for the ATLAS New Small Wheel upgrade".
In: Physica Scripta 95.8 (July 2020).
Publisher: IOP Publishing, p. 084010.
ISSN: 1402-4896.
[14] G. Aad et al. "Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton-proton collision data".
In: Journal of Instrumentation 14.12 (Dec. 2019), P12006.
ISSN: 1748-0221.
[15] G. Aad et al. "Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at s = √13TeV".
In: The European Physical Journal C 81.7 (July 5, 2021), p. 578.
ISSN: 1434-6052.
[16] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. "The anti-kt jet clustering algorithm".
In: Journal of High Energy Physics 2008.4 (Apr. 2008), p. 063.
ISSN: 1126-6708.
[17] A. Einstein, B. Podolsky, and N. Rosen. "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?"
In: Physical Review 47.10 (May 15, 1935), pp. 777–780.
ISSN: 0031-899X.
[18] J. S. Bell. "On the Einstein Podolsky Rosen paradox".
In: Physics Physique Fizika 1.3 (Nov. 1, 1964).
Publisher: American Physical Society, pp. 195–200.
[19] J. S. Bell. Speakable and Unspeakable in Quantum Mechanics.
Cambridge University Press, July 28, 1988. 224 pp.
ISBN: 978-0-521-36869-8.
[20] John F. Clauser et al. "Proposed Experiment to Test Local Hidden-Variable Theories".
In: Physical Review Letters 23.15 (Oct. 13, 1969).
Publisher: American Physical Society, pp. 880–884.
[21] R. T. Thew et al. "Qudit quantum-state tomography".
In: Physical Review A 66.1 (July 16, 2002).
Publisher: American Physical Society, p. 012303.
[22] Rachel Ashby-Pickering, Alan J. Barr, and Agnieszka Wierzchucka. "Quantum state tomography, entanglement detection and Bell violation prospects in weak decays of massive particles".
In: Journal of High Energy Physics 2023.5 (May 2, 2023), p. 20.
ISSN: 1029-8479.
[23] Feifei Li, Carol Braun, and Anupam Garg. "The Weyl-Wigner-Moyal Formalism for Spin".
In: EPL (Europhysics Letters) 102.6 (June 1, 2013), p. 60006.
ISSN: 0295-5075, 1286-4854.
arXiv: 1210.4075.
[24] ATLAS Collaboration et al. "Observation and measurement of Higgs boson decays to WW* with the ATLAS detector".
In: Physical Review D 92.1 (July 16, 2015).
Publisher: American Physical Society, p. 012006.
[25] Eugene Wigner. Group theory: and its application to the quantum mechanics of atomic spectra.
Academic Press, 1959.
[26] Ll Masanes. "Tight Bell inequality for d-outcome measurements correlations".
In: Quantum Info. Comput. 3.4 (July 1, 2003), pp. 345–358.
ISSN:1533-7146.
[27] Daniel Collins et al. "Bell Inequalities for Arbitrarily High-Dimensional Systems".
In: Physical Review Letters 88.4 (Jan. 10, 2002).
Publisher: American Physical Society, p. 040404.
[28] Alan J. Barr. "Testing Bell inequalities in Higgs boson decays".
In: Physics Letters B 825 (Feb. 10, 2022), p. 136866.
ISSN: 0370-2693.
[29] W. Bernreuther, D. Heisler, and Z.-G. Si. "A set of top quark spin correlation and polarization observables for the LHC: Standard Model predictions and new physics contributions".
In: Journal of High Energy Physics 2015.12 (2015), pp. 1–36.
[30] TruthDAOD < AtlasProtected < TWiki. URL: https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/TruthDAOD#TRUTH3 .
[31] Jon Butterworth et al. "PDF4LHC recommendations for LHC Run II".
In: Journal of Physics G: Nuclear and Particle Physics 43.2 (Jan. 2016).
Publisher: IOP Publishing, p. 023001. ISSN: 0954-3899.
[32] Keith Hamilton et al. "NNLOPS simulation of Higgs boson production".
In: Journal of High Energy Physics 2013.10 (Oct. 30, 2013), p. 222.
ISSN: 1029-8479.
[33] Torbjörn Sjöstrand et al. "An introduction to PYTHIA 8.2".
In: Computer Physics Communications 191 (June 1, 2015), pp. 159–177.
ISSN: 0010-4655.
[34] ATLAS Collaboration et al. "Measurements of Higgs boson production by gluon-gluon fusion and vector-boson fusion using H → WW* → eνμν decays in pp collisions at s = √13 TeV with the ATLAS detector".
In: Physical Review D 108.3 (Aug. 8, 2023).
Publisher: American Physical Society, p. 032005.
[35] Rosemarie Zoë Aben. "Spinning the Higgs: Spin and parity measurement of the discovered Higgs-like boson in the H → WW → lνlν decay mode".
PhD thesis. NIKHEF, Amsterdam, 2015.
[36] S. Navas et al. "Review of Particle Physics".
In: Physical Review D 110.3 (Aug. 1, 2024).
Publisher: American Physical Society, p. 030001.
[37] Wikimedia Commons. Artificial neuron structure. May 31, 2024.
URL: https://commons.wikimedia.org/wiki/File:Artificial_neuron_structure.svg .
[38] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, Nov. 10, 2016. 801 pp.
ISBN: 978-0-262-33737-3.
[39] TensorFlow Developers. TensorFlow. Version v2.19.0-rc0.
Feb. 24, 2025.
[40] François Chollet et al. Keras.
2015.
[41] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
Jan. 30, 2017.
arXiv: 1412.6980.
[42] Günter Klambauer et al. Self-Normalizing Neural Networks.
Sept. 7, 2017.
arXiv: 1706.02515.