研究生: |
林俊宇 Lin, Chun-Yu |
---|---|
論文名稱: |
不同風險值模型的比較與應用 A Study of Value at Risk Models |
指導教授: |
黃裕烈
Huang, Yu-Lieh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 計量財務金融學系 Department of Quantitative Finance |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 風險值 、分量值 、Expectile 值 、條件期望值 、一致性風險測度 |
外文關鍵詞: | Coherent measures of risk, Expected Shortfall, Expectile, Quantile, VaR. |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在金融市場裡,風險是造成投資者的資產價格波動的主要原因之一,因此如何正確地衡量風險為一重要的研究議題。文獻上,一種常用來衡量風險的方法稱為風險值(value at risk),依照Jorion(2000) 的定義,我們可將風險值視為在某一信賴水準下,於未來某一期間內資產報酬最大的可能損失。近年來,在衡量風險值的議題上,計量分析已經成為一種重要的衡量方式, 其中較著名的有 Koenker and Bassett(1978) 所提出的分量回歸法(quantile regression),Newey and Powell(1987) 提出的 expectile 模型,以及 Acerbi and Tasche~(2001) 所提出的 expected shortfall 概念,此三種方法均能估計出資產報酬的風險值。而要如何判斷這些方法的優劣,可以利用 Artzner, Delbaen, Eber and Heath(1999) 提出的一致性風險測度(coherent measures of risk) 的概念來衡量之。在實證議題上,本篇論文將此三種方法以及普通的風險值法應用於股票市場中,探討公司下市前,這些風險值是否有異常的情況發生,並對實證結果加以解釋,期望當有異常情況發生時能及時發現,減少投資人或風險管理者因下市而產生的投資損失。
Acerbi, C., C. Nordio and C. Sirtori(2008). Expected shortfall as a tool for financial risk management, Working paper, www.gloriamundi.org.
Acerbi, C. and D. Tasche(2001). Expected shortfall: a natural coherent alternative to value at risk, Economic Notes, 31, 379-388.
Andrews, D. W. K.(1987). Consistency in nonlinear econometric models a generic uniform law of large numbers, Econometrica, 55, 1465-1471.
Artzner, P., F. Delbaen, J.M. Eber and D. Heath(1999). Coherent measures of risk, Mathematical Finance, 9. 203-228.
Bear, H. L., V. G. France and J. T. Moser(1994). Opportunity cost and prudentiality: An analysis of futures clearinghouse behavior, Working Paper, The World Bank Policy Research Department, New York.
Bierens, H. J.(2005). Introduction to the athematical and Statistical Foundations of Econometrics, Cambridge, United Kingdom.
Bierens, H. J.(2005). The uniform weak law of large numbers and the consistency of M estimators of cross section and time series models, Pennsylvania State University.
Cottor, J. and K. Dowd(2006). Extreme spectral risk measures: An application to futures clearinghouse margin requirements, Journal of Banking and Finance, 30, 3469-3485.
Efron, B. (1991). Regression percentiles using asymmetric squared error loss, Statistica Sinica, 1, 93-125.
Engle, R. F. and S. Manganelli(1999). CAViaR: Conditional autoregressive value at risk regression quantiles, Working papers, University of California, San Diego.
Gosset, W. S. (1908). The problem error of a mean, Biometrika, 6, 1-25.
Holton, G. A. (2002). History of value-at-risk:1922-1998, Working paper, Contingency Analysis, P.O. Box 961 Boston, MA 02199, United States.
Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions, Proceedings of the 5th Berkeley Symposium, 1, 221-233.
Jorion, P. (2000). Value at Risk: The New Benchmark for Managing Financial Risk, McGraw-Hill, Chicago.
Knight, K. (1998). Limiting distributionsfor L1 regression estimators under general conditions, The Annals of Statistics, 26, 755-770.
Koenker, R. (2005). Quantile Regression. Cambridge, New York.
Koenker, R. and G. Bassett(1978). Regression quantiles, Econometrica, 46, 33-50.
Kuan, C.M., J. H. Yeh and Y. C. Hsu(2008). Assessing value at risk with CARE, the Conditional Autoregressive Expectile models, Journal of Econometrics, 150, 261-270.
Lam, K., C. Y. Sin and R. Leung(2004). A theoretical framework to evaluate different margin-setting methodologies, Journal of Futures Markets, 24, 117-145.
Newey, W. K. and J. L. Powell(1987). Asymmetric least squares estimation and testing, Econometrica, 55, 819-847.
Peracchi, F. and A. V. Tanase(2008). On estimating the conditional expected shortfall, CEIS Tor Vergata, research paper series, 6, Issue 6, No. 122.
Roy, A. D. (1952). Safety first and the holding of assets, Econometrica, 20, 431-449.
Taylor, J. W. (2008). Estimating value at risk and expected shortfall using expectiles, Journal of Financial Econometrics, 6, 231-252.
Yao, Q. and H. Tong(1996). Asymmetric least squares regression and estimation: a nonparametric approach, Nonparametric Statistics, 6, 273-292.
Zabell, S. L. (1995). Alan turing and the central limit theorem, The American Mathematical Monthly, 102, 483-494.