簡易檢索 / 詳目顯示

研究生: 楊貿元
Yang, Mao-Yuan
論文名稱: 鈷、鋯複合摻雜及鈷、鈰複合摻雜對二氧化鈦奈米粒子的電子能隙影響研究
Band gap narrowing of anatase TiO2 nanoparticles induced by Co-Zr and Co-Ce co-doping
指導教授: 蘇雲良
Soo, Yun-Liang
口試委員: 蘇雲良
張石麟
湯茂竹
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 54
中文關鍵詞: 二氧化鈦延伸X光吸收精細結構電子能隙窄化
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了提升二氧化鈦作為光觸媒的效率,我們試圖縮小其電子能隙以增加吸收的頻段。文獻中提到用n-type、p-type複合摻雜能大幅縮小電子能隙。以這為參考,但我們使用價數跟鈦一樣的鋯,在銳鈦礦結構的二氧化鈦奈米粒子中複合摻雜了鈷、鋯以縮小電子能隙,同時也使用價數主要為+3及+4的鈰,製作鈷、鈰複合摻雜的樣品做比較。
    以X光繞射量測、拉曼光譜、延伸X光吸收精細結構、感應耦合電漿質譜儀以及紫外─可見分子吸收光譜法量出的數據,確認樣品除了部分轉變為二氧化鈦的其他結構外,應為鈷、鋯、鈰摻雜在二氧化鈦銳鈦礦中,並確認了各元素實際摻雜的比例。量出的數據顯示複合摻雜比起摻雜有更顯著的電子能隙縮小,鈷、鋯複合摻雜及鈷、鈰複合摻雜的電子能隙分別從3.12eV縮小到2.13eV及從2.36eV縮小到1.90eV。故確定在使用複合摻雜縮小銳鈦礦結構的二氧化鈦電子能隙的方法中,鈷、鋯復合摻雜及鈷、鈰復合摻雜都是可以採用的。


    In this thesis, we have tried to narrow the band gap of anatase TiO2 for enhancing the visible-light absorption and therefore improving the photocatalytic activity of these photocatalysts. Recently, n-type and p-type co-doping has been reported to achieve larger band-gap reduction in anatseTiO2 compared to monodoping of the same elements. In contrast to the above cases, we have co-doped Zr and Ce, which have the same oxidation state as Ti, with the Co dopant to form Co-Zr and Co-Ce co-doped anataseTiO2, respectively.
    A variety of experimental methods such as x-ray diffraction, Raman spectroscopy, EXAFS, ICP-MS and UV-Vis spectroscopy have been employed in our work. Except for some minor rutile or brookite phase formation, most of the samples were shown to be in the form of doped anatase TiO2. The concentration of dopant atoms successfully incorporated into the sample has also been measured. Our experimental data show that the band gap narrowing effect is substantially enhanced in co-doped samples compared to that in the monodoped samples. Quantitatively, we have found the band gap to reduce from 3.12eV for the Co-doped sample to 2.13eV for Co-Zr codoped sample and from 2.36eV for the Ce-doped sample to 1.90eV for the Co-Ce co-doped sample of TiO2. Our results demonstrate that Co -Zr and Co-Ce co-doping are very effective for narrowing the band gap of anatase TiO2.

    章節目錄 摘要…………………………………………………………………… i 英文摘要……………………………………………………………… ii 章節目錄……………………………………………………………… iii 圖表目錄……………………………………………………………… v 第一章 序論 第一節 研究動機……………………………………………… 1 第二節 論文簡介……………………………………………… 1 第二章 理論與文獻回顧 第一節 二氧化鈦簡介………………………………………… 3 第二節 光觸媒材料簡介……………………………………… 6 第三章 實驗原理與方法 第一節 X光繞射(X-Ray Diffraction; XRD)……………………… 7 第二節 延伸X光吸收精細結構 (Extended X-Ray Absorption Fine Structure; EXAFS)……… 12 第三節 拉曼光譜(Raman spectroscopy)…………………………… 17 第四節 感應耦合電漿質譜儀 (Inductively Coupled Plasma Mass Spectrometry; ICP-MS)…… 20 第五節 紫外-可見分子吸收光譜法(UV-Vis spectroscopy)…… 22 第四章 樣品製備實驗流程 第一節 溶膠凝膠法(Sol-Gel)…………………………………… 24 第二節 藥品…………………………………………………… 26 第三節 流程…………………………………………………… 27 第四節 樣品代號……………………………………………… 28 第五章 數據結果分析討論 第一節 X光繞射(X-Ray Diffraction; XRD)……………………… 30 第二節 延伸X光吸收精細結構 (Extended X-Ray Absorption Fine Structure; EXAFS)……… 33 第三節 拉曼光譜(Raman spectroscopy)………………………… 42 第四節 感應耦合電漿質譜儀 (Inductively Coupled Plasma Mass Spectrometry; ICP-MS)…… 44 第五節 紫外-可見分子吸收光譜法(UV-Vis spectroscopy)…… 45 第六章 討論與結論………………………………………………… 49 第七章 參考文獻…………………………………………………… 51

    [2-1] Y. L. Soo, G. Kioseoglou, S. Kim, Y. H. Kao, P. Sujatha Devi, John Parise, R. J. Gambino, and P. I. Gouma, Applied Physics Letters 81, 655 (2002)
    [2-2]A. Zaleska, Recent Patents on Engineering 2 (2008) 157
    [2-3] C. Parks Cheney, P. Vilmercati, E. W. Martin, M. Chiodi, L. Gavioli, M. Regmi, G. Eres, T. A. Callcott, H.H. Weitering, and N. Mannella, PhysRevLett.112.036404
    [3-1]Mikrajuddin Abdullah, Khairurrijal, J. NanoSaintek. Vol. 1 No. 1, Feb 2008
    [4-1]Yan Min Wang, Su Wen Liu, Meng Kai Lü, Shu Fen Wang, Feng Gu, Xue Zhou Gai, Xiao Peng Cui, Jie Pan, Journal of Molecular Catalysis A: Chemical, Volume 215, Issues 1–2, 14 June 2004, Pages 137-142
    [4-2]Santi Maensiri, PaveenaLaokul, JutharatanaKlinkaewnarong, Journal of Magnetism and Magnetic Materials, Volume 302, Issue 2, July 2006, Pages 448-453,
    [4-3]M.A. Barakat, H. Schaeffer, G. Hayes, S. Ismat-Shah, Applied Catalysis B: Environmental, Volume 57, Issue 1, 15 April 2005, Pages 23-30
    [4-4]B.Z. Jiang, T.L. Phan, D.S. Yang, K.W. Lee, S.C. Yu, Solid State Communications, Volume 150, Issues 39–40, October 2010, Pages 1932-1935
    [4-5]Xiao P. Zhao, Jian B. Yin, Chem. Mater.2002,14, 2258-2263
    [5-1]V. Pore, M. Ritala, M. Leskela, S. Areva, M. Jarn and J. Jarnstrom, J. Mater. Chem. 2007,17, 1361–1371
    [5-2]A. M. GarridoPedrosa, D. M. A. Melo, M. J. B. ouza, A. S. Araujo, S. H. Lima, M. A. F. Melo, J. M. Sasaki, Journal of Chemical Crystallography, March 2009, Volume 39, Issue 3, pp 186-192
    [5-3]Shuang Song, Fangyue Hong, Zhiqiao He, Hongyu Wang, Xianghong Xu, Jianmeng Chen, Applied Surface Science 257 (2011) 10101– 10108
    [5-4]G. Liu, H. G. Yang, C. Sun, L. Cheng, L. Wang, G. Q. Lu and H.-M. Cheng, CrystEngComm, 2009,11, 2677
    [5-5]Junqing Yan, Guangjun Wu, Naijia Guan, Landong Li, Zhuoxin Li, and Xingzhong Cao,Phys. Chem. Chem. Phys.,2013, 15, 10978-10988
    [5-6]Mitsunobu Iwasaki, Masayoshi Hara, Hiromi Kawada, Hiroaki Tada, Seishiro Ito, Journal of Colloid and Interface Science, Volume 224, Issue 1, 1 April 2000, Pages 202-204
    [5-7]Sajid Ali Ansari,MohammadMansoobKhan,MohdOmaishAnsari,ShafeerKalathil,Jintae Lee, and Moo Hwan Cho, RSCAdv.,2014,4, 16782
    [5-8]N. Shehata, K. Meehan, M. Hudait, N. Jain, J Nanopart Res (2012) 14:1173
    [6-1]Jimmy C. Yu , Jun Lin , and Raymund W. M. Kwok, J. Phys. Chem. B, 1998, 102 (26), pp 5094–5098
    [6-2]Caimei Fan, Peng Xue, Yanping Sun, Journal of Rare Earths, Volume 24, Issue 3, June 2006, Pages 309-313

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE