研究生: |
許明禎 Syu,Ming Chen |
---|---|
論文名稱: |
還原態氧化石墨烯奈米複合體之雙重傳遞載體系統開發 Co-delivery platform based on rGO-PEI/PEG nanocomplex |
指導教授: |
黃郁棻
Huang,Yu Fen |
口試委員: |
張建文
Chang,Chien Wen 林宗宏 Lin, Zong Hong |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | 石墨烯 、基因治療 、小紅莓 、水熱法還原 、光熱治療 |
外文關鍵詞: | Graphene Oxide, Gene therapy, Doxorubicin, hydrothermal reduction, photothermal therapy |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基因治療是一種藉由導引一段外來基因片段至目標細胞進行治療的過程。基因治療主要針對是多種遺傳及特定的疾病。利用小分子干擾核糖核酸 (siRNA) 靜默多重抗藥性蛋白 (MDR) 的技術,提供一個全新的機會去克服目前化療上遇到的抗藥性問題。在本篇研究中,利用氧化石墨稀 (GO), 聚乙烯亞胺 (PEI) 和聚乙二醇 (PEG) 作為起始材料,並藉由水熱法一步合成,製備出可進行雙重傳遞的載體,最終產物奈米平台rGO-PEI/PEG 具有低毒性且可在重量比 3.4的條件下有效縮合上siRNA。此外rGO-PEI/PEG具有高載藥量 (Dox, ~0.49 mg/mg) 的特點並能利用光熱效果在細胞質中釋放藥物。藉由照射適當的近紅光雷射,rGO-PEI/PEG載藥後的載體可以結合光熱治療和化療達到增強治療腫瘤和癌細胞的療效。利用可同時載負雙重藥物 (DOX和siRNA) 的載體rGO-PEI/PEG,達到治療上雙藥的協同作用,並加上雷射治療未來可以增強有抗藥性的癌細胞的治療。此外本篇論文也針對石墨稀功能化及在藥物和基因傳遞上的研究多加探討。
Gene therapy is a process of introducing foreign genomic materials into target cells to elicit a therapeutic benefit. A diverse array of inherited and acquired diseases are targets of gene therapy. To overcome the multidrug resistance (MDR), one of the major impediment against curative cancer chemotherapy, the application of small interfering RNA (siRNA) provide a new opportunity for specific gene-silencing of MDR-associated proteins. In this study, a simple and novel approach is presented for constructing a dual delivery vector through a one-pot hydrothermal reaction, using graphene oxide (GO), polyethylenimine (PEI) and polyethylene glycol (PEG) as starting materials. The resulting nanoplatform, rGO-PEI/PEG exhibited minimal toxicity and could effectively complex siRNA at a W/W ratio above 3.4. Additionally, rGO-PEI/PEG was capable of high drug loading (doxorubicin, ~0.49 mg/mg) and photothermally triggered cytosolic drug delivery. With optimal near-infrared laser irradiation, the drug-loaded rGO-PEI/PEG demonstrated an enhanced antitumor efficacy in cancer cells through combined photothermal effect and chemotherapy. The synergistic potential of dual drugs (doxorubicin and siRNA)-loaded rGO-PEI/PEG in combination with laser irradiation will next be explored to augment the therapeutic effect in MDR cancer cells. The advances described above will complement our knowledge of graphene functionality and serve to guide its application in gene/drug delivery.
1. Swift, L. P.; Rephaeli, A.; Nudelman, A.; Phillips, D. R.; Cutts, S. M., Doxorubicin-DNA adducts induce a non-topoisomerase II–mediated form of cell death. Cancer research 2006, 66 (9), 4863-4871.
2. Aruffo, A.; Stamenkovic, I.; Melnick, M.; Underhill, C. B.; Seed, B., CD44 is the principal cell surface receptor for hyaluronate. Cell 1990, 61 (7), 1303-1313.
3. Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S., Design and development of polymers for gene delivery. Nature reviews Drug discovery 2005, 4 (7), 581-593.
4. Anderson, W. F., Prospects for human gene therapy. Science 1984, 226 (4673), 401-409.
5. Yang, S.; Lee, R. J.; Yang, X.; Zheng, B.; Xie, J.; Meng, L.; Liu, Y.; Teng, L., A novel reduction-sensitive modified polyethylenimine oligonucleotide vector. International journal of pharmaceutics 2015, 484 (1), 44-50.
6. Akhtar, S., Non-viral cancer gene therapy: beyond delivery. Gene therapy 2006, 13 (9), 739-740.
7. El-Sayed, A.; Futaki, S.; Harashima, H., Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. The AAPS journal 2009, 11 (1), 13-22.
8. Loo, T. W.; Clarke, D. M., Molecular dissection of the human multidrug resistance P-glycoprotein. Biochemistry and cell biology 1999, 77 (1), 11-23.
9. Davidsen, T.; Tønjum, T., Meningococcal genome dynamics. Nature Reviews Microbiology 2006, 4 (1), 11-22.
10. Elmore, S., Apoptosis: a review of programmed cell death. Toxicologic pathology 2007, 35 (4), 495-516.
11. Thomas, S. N.; Liao, Z.; Clark, D.; Chen, Y.; Samadani, R.; Mao, L.; Ann, D. K.; Baulch, J. E.; Shapiro, P.; Yang, A. J., Exosomal proteome profiling: a potential multi-marker cellular phenotyping tool to characterize hypoxia-induced radiation resistance in breast cancer. Proteomes 2013, 1 (2), 87-108.
12. Liu, Y., Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. Journal of the American Society of Nephrology 2004, 15 (1), 1-12.
13. Kalluri, R.; Zeisberg, M., Fibroblasts in cancer. Nature Reviews Cancer 2006, 6 (5), 392-401.
14. Gorman, A.; Killoran, J.; O'Shea, C.; Kenna, T.; Gallagher, W. M.; O'Shea, D. F., In vitro demonstration of the heavy-atom effect for photodynamic therapy. Journal of the American Chemical Society 2004, 126 (34), 10619-10631.
15. Schinkel, A. H.; Wagenaar, E.; van Deemter, L. a.; Mol, C.; Borst, P., Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. Journal of Clinical Investigation 1995, 96 (4), 1698.
16. Green, M.; Manikhas, G.; Orlov, S.; Afanasyev, B.; Makhson, A.; Bhar, P.; Hawkins, M., Abraxane®, a novel Cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Annals of Oncology 2006, 17 (8), 1263-1268.
17. Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H., Exploiting the enhanced permeability and retention effect for tumor targeting. Drug discovery today 2006, 11 (17), 812-818.
18. Carman, A. J.; Mills, J. H.; Krenz, A.; Kim, D.-G.; Bynoe, M. S., Adenosine receptor signaling modulates permeability of the blood–brain barrier. The Journal of Neuroscience 2011, 31 (37), 13272-13280.
19. Neto, A. C.; Guinea, F.; Peres, N. M.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Reviews of modern physics 2009, 81 (1), 109.
20. Brodie, B. C., On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London 1859, 149, 249-259.
21. Hummers Jr, W. S.; Offeman, R. E., Preparation of graphitic oxide. Journal of the American Chemical Society 1958, 80 (6), 1339-1339.
22. Zhou, Y.; Bao, Q.; Tang, L. A. L.; Zhong, Y.; Loh, K. P., Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chemistry of Materials 2009, 21 (13), 2950-2956.
23. Flyunt, R.; Knolle, W.; Kahnt, A.; Eigler, S.; Lotnyk, A.; Häupl, T.; Prager, A.; Guldi, D.; Abel, B., Efficient route to high-quality graphene materials: Kinetically controlled electron beam induced reduction of graphene oxide in aqueous dispersion. Am. J. Nano Res. Appl. 2014, 2, 9-18.
24. Zhang, J.; Yang, H.; Shen, G.; Cheng, P.; Zhang, J.; Guo, S., Reduction of graphene oxide via L-ascorbic acid. Chemical Communications 2010, 46 (7), 1112-1114.
25. Yang, F.; Zhao, M.; Zheng, B.; Xiao, D.; Wu, L.; Guo, Y., Influence of pH on the fluorescence properties of graphene quantum dots using ozonation pre-oxide hydrothermal synthesis. Journal of Materials Chemistry 2012, 22 (48), 25471-25479.
26. Xu, C.; Yang, D.; Mei, L.; Li, Q.; Zhu, H.; Wang, T., Targeting chemophotothermal therapy of hepatoma by gold nanorods/graphene oxide core/shell nanocomposites. ACS applied materials & interfaces 2013, 5 (24), 12911-12920.
27. Zhang, L.; Lu, Z.; Zhao, Q.; Huang, J.; Shen, H.; Zhang, Z., Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI‐grafted graphene oxide. Small 2011, 7 (4), 460-464.
28. Zhi, F.; Dong, H.; Jia, X.; Guo, W.; Lu, H.; Yang, Y.; Ju, H.; Zhang, X.; Hu, Y., Functionalized graphene oxide mediated adriamycin delivery and miR-21 gene silencing to overcome tumor multidrug resistance in vitro. PloS one 2013, 8 (3), e60034.
29. Yin, D.; Li, Y.; Lin, H.; Guo, B.; Du, Y.; Li, X.; Jia, H.; Zhao, X.; Tang, J.; Zhang, L., Functional graphene oxide as a plasmid-based Stat3 siRNA carrier inhibits mouse malignant melanoma growth in vivo. Nanotechnology 2013, 24 (10), 105102.
30. Yang, X.; Niu, G.; Cao, X.; Wen, Y.; Xiang, R.; Duan, H.; Chen, Y., The preparation of functionalized graphene oxide for targeted intracellular delivery of siRNA. Journal of Materials Chemistry 2012, 22 (14), 6649-6654.
31. Kim, H.; Lee, D.; Kim, J.; Kim, T.-i.; Kim, W. J., Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS nano 2013, 7 (8), 6735-6746.
32. Roy, S.; Tang, X.; Das, T.; Zhang, L.; Li, Y.; Ting, S.; Hu, X.; Yue, C., Enhanced molecular level dispersion and interface bonding at low loading of modified graphene oxide to fabricate super nylon 12 composites. ACS applied materials & interfaces 2015, 7 (5), 3142-3151.