簡易檢索 / 詳目顯示

研究生: 張嘉峻
Chang, Chia-Chun
論文名稱: 應用於可攜式發電機與直流電源供應器之切換式鋰離子電池充電器
A Buck Li-ion Battery Charger Suitable for Portable Generators and Adapters
指導教授: 徐永珍
Hsu, Yung-Jane
口試委員: 江雨龍
Jiang, Yeu-Long
許國強
Hsu, Kuo-Chiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 67
中文關鍵詞: 可攜式發電機切換式充電器鋰電池
外文關鍵詞: Portable generators, Buck charger, Li-ion battery
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來人們開始提倡綠能發展,除了增加再生能源的利用之外,能源回收也是一直是被大家所廣泛討論的課題;問題在於現今的可攜式發電機不論是機電轉換的發電機還是小型太陽能板,其共通的特點為能量來源微小且不穩定,而本論文提出一種適用於可攜式發電機之切換式鋰離子電池充電晶片,其特色在於Buck架構本身擁有良好的功率轉換效率,再加上良好的穩定度設計,使其克服了可攜式發電機能量來源微小且不穩定的問題。
    依照鋰電池的化學特性關係,本論文的充電晶片採用三種階段的充電模式,依序為穩定小電流充電、穩定大電流充電以及穩定電壓充電,其定電流模式是利用簡單的電流鏡架構自動偵測正半週期的充電電流,並透過PWM控制duty cycle,將充電電流上限設定在鋰電池所能忍受的合理值,如此一來前方的能源蒐集器如果蒐集較少的能源時(所能提供的充電電流不足上限值),duty cycle將為100%,相對的如果能源蒐集器蒐集過多的能量時(所能提供的充電電流超越上限值),充電器也能調控duty cycle將充電電流穩在電池所能忍受的上限值,以維持最佳的充電效率。
    此晶片使用TSMC 0.35μm CMOS 2P4M標準製程實現,模擬結果顯示充電效率能達到90%左右,其量測的結果效率也達到86.1%,符合能源回收的高效率表現。


    Nowadays, the development of green energy systems becomes more and more important. In addition to renewable energy, energy harvesting is another way to replace conventional fuels. There are two popular portable generators to derive energy: a mechanical-to-electrical generator and a portable solar board. Nevertheless, the source of power is small and unstable in both cases. Thus it is hard to collect the generated energy efficiently. As a result, this work proposed a Buck Li-ion battery charger IC for portable generators which overcomes the problems of efficiency and stability.
    According to the chemical characteristics of Li-ion battery, there are three different charging modes correlating with battery voltage, namely the trickle current (TC) mode, the time varying energy from portable generators makes the charger difficult to maintain an efficient CC mode. In this work, a current mirror in the charger circuit is utilized to sense the charging current during positive duty cycle and maintain its value by using a pulse width modulator (PWM). Once a charging routine begins, if the portable generator provides suitable charging current, then the duty cycle is incremented to100% by the pulse width modulator. Conversely, if the portable generator provides too much power, then the duty cycle is decremented to limit the excessive current.
    This chip was fabricated in a TSMC 0.35μm CMOS technology. The simulation results show that the charging efficiency is about 90% and the measured performance indicates that the charging efficiency is 86.1%. The IC is suitable for energy harvesting applications.

    摘要 2 Abstract 3 致謝 i 索引 ii 附圖索引 iv 附表索引 vi 第一章 緒論 1 1-1. 研究動機 1 1-2. 論文組織 2 第二章 鋰離子電池的基本原理與介紹 4 2-1. 鋰離子電池的優點 4 2-2. 鋰離子電池的構造與化學反應 5 2-3. 鋰離子電池的容量描述 7 2-4. 鋰離子電池的充電方法 7 2-4-1. 鋰離子電池充電和放電的安全性問題 7 2-4-2. 定電壓(Constant Voltage, CV)充電法 8 2-4-3. 定電流(Constant Current, CC)充電法 9 2-4-4. 定電流切換定電壓充電法 9 第三章 Buck charger電路設計 11 3-1. Buck converter基本原理 11 3-2. Buck charger電路介紹 13 3-3. 電感感值之選擇 15 3-4. 電壓偵測(Voltage sensing) 16 3-5. 電流偵測(Current sensing) 23 第四章 模擬結果與佈局考量 29 4-1. 比較器(Comparator) 29 4-2. 方波控制器(Pulse Width Modulator) 31 4-2-1. 斜波及方波產生器(Ramp & Oscillator generator) 31 4-2-2. SR-Latch 33 4-3. 帶差參考電路(Bandgap reference) 34 4-4. 正溫度係數電流參考電路(PTAT current reference) 36 4-5. 驅動電路(Driver) 39 4-6. 充電電路系統模擬 40 4-7. 佈局考量 44 4-7-1.一般佈局技巧 44 4-7-2.整體系統佈局考量 47 第五章 量測結果與討論 52 5-1. 量測平台 52 5-2. 量測環境 53 5-3. 量測結果 55 5-3-1. 使用直流電源供應器之量測結果 55 5-3-2. 使用手轉式發電機之量測結果 58 5-4. 實驗問題討論 60 第六章 結論與後續研究建議 63 6-1. 結論 63 6-2. 後續研究建議 64 6-2-1. 實現大範圍輸入電壓之穩壓器 64 6-2-2. 加入溫度保護電路裝置 64 參考文獻 66

    [1]IBM, “The next 5 in 5,” Smarter Plant, 2011.
    http://www.ibm.com/smarterplanet

    [2] Chia-Hsiang Lin, Chun-Yu Hsieh, and Ke-Horng Chen, “A Li-Ion Battery Charger With Smooth Control Circuit and Built-In Resistance Compensator for Achieving Stable and Fast Charging,” IEEE Trans. Circuits and Systems I, vol. 57, no. 2, pp.506-517, Feb. 2010

    [3] C.-S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron, vol. 52, no. 5, pp.1308–1314, Oct. 2005.

    [4] Y. S. Hwang, C. C. Wang, F. C. Yang, and J. J. Chen, “New compact CMOS Li–Ion battery charger using charge-pump technique for portable applications,” IEEE Trans. Circuits and Systems I, vol. 54, no. 4,pp.705–712, Apr. 2007.

    [5] Jiann-Jong Chen, Fong-Cheng Yang, Chien-Chih Lai, Yuh-Shyan Hwang, and Ren-Guey Lee, “A High-Efficiency Multimode Li–Ion Battery Charger With Variable Current Source and Controlling Previous-Stage Supply Voltage,” IEEE Trans. Ind. Electron, vol. 56, no.4, pp.2469-2487, July 2009.

    [6] 李文雄,,“E世代的能源-鋰電池”,科學發展,362期,二月2003,第32~35頁。

    [7] 呂學隆,“全球鋰電池正極材料市場現況”,台灣區電機電子工業同業公會電子報,第 117 期,四月 2010。

    [8] 王昱權,PWM/PFM 雙模式排程鋰離子電池充電控制器之設計,碩士論文,朝陽科技大學資訊工程系,七月 2008。

    [9] Scott Dearborn, “Charging Li-ion Batteries for Maximum Run Times,” Power Electronics Technology, pp.40-49, April 2005.

    [10] 王柏崴,機器人之智慧型充電站與電源管理,碩士論文,成功大學工程科學研究所,七月 2008。

    [11] Marian K. Kazimierczuk, Pulse-width Modulated DC–DC Power Converters. Dayton, Ohio, USA: A John Wiley and Sons, Ltd, 2008.

    [12] Phillip E.Allen,Douglas R. Holberg, CMOS Analog Circuit Design. Oxford, New York: Oxford University Press, 2002

    [13] Cheung Fai Lee and Philip K. T. Mok,“A Monolithic Current-Mode CMOS DC–DC Converter With On-Chip Current-Sensing Technique,” IEEE Solid-State Circuits, vol. 39, no.1,pp.3-14, January 2004.

    [14] Behzad Razavi, Design Analog CMOS Integrated Circuits. Los Angeles: McGraw-Hill International Edition, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE