簡易檢索 / 詳目顯示

研究生: 張文馨
Chang, Wen-Hsin
論文名稱: 整合型微流體系統平台於分子診斷技術之應用
Applications of integrated microfluidic systems for molecular diagnosis
指導教授: 李國賓
Lee, Gwo-Bin
口試委員: 李國賓
李炫昇
楊瑞珍
吳旻憲
王玉麟
曾繁根
陳宗嶽
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 134
中文關鍵詞: 微流體恆溫環狀擴增法聚合酶鏈鎖反應奈米金探針水產養殖病原菌蝴蝶蘭關節周邊組織感染微機電系統微型全分析系統
外文關鍵詞: microfluidics, loop-mediated isothermal amplification (LAMP), polymerase chain reaction (PCR), nanogold probe, aquaculture pathogens, Phalaenopsis orchid, periprosthetic joint infection, Micro-Electro-Mechanical-Systems (MEMS), micro-total-analysis-system (μTAS)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著社會的進步,個體間的距離越來越近,許多快速傳播的感染病因而出現。這些感染病不僅威脅人類健康甚鉅,亦造成嚴重經濟損失。早期偵測及診斷是遏止傳染疾病擴散的關鍵因素。因此許多研究學者投身於開發既正確又快速的偵測及診斷工具。在所有偵測工具中,分子診斷已被廣泛地應用於感染病偵測因為其具有高靈敏性和專一性。分子偵測可提供正確且靈敏的偵測結果,這些結果可作為處置方法之參考。然而,複雜的程序及操作者所造成的誤差和汙染使得分子診斷尚無法成為一良好的田間試驗或即時醫療工具。
    為了解決以上問題,本論文提出四種整合式微流體系統,分別可以直
    由魚類,蘭花及人類關節液樣本中對細菌及病毒等病原體以分子診斷的方式進行偵測。這些整合式微流體系統借助生物微機電系統的知識,將數個微流體元件整合至單一生物晶片上而達成晶片實驗室的想法。此外,整合式微流體系統可自動化執行傳統生醫實驗中所有手動步驟,不需操作者介入而省下時間金錢,因此可避免操作者所造成的誤差和汙染。
    本論文針對這些整合式微流體系統的效能進行確效,結果顯示其具有高度專一性,且不同系統之靈敏度分別為20條DNA拷貝數(恆溫環狀擴增法及螢光偵測),35皮克質體去氧核糖核酸(恆溫環狀擴增法及濁度偵測),200菌落形成單位(聚合酶鏈鎖反應及螢光偵測)及100個菌落形成單位(奈米金探針偵測)。此外,本研究以具有溫度控制模組,液體傳輸模組及光學偵測模組的整合式控制系統自動化地於短時間內完成包含分離去氧核糖核酸/核糖核酸/細菌,利用聚合酶鏈鎖反應或恆溫環狀擴
    增進行核酸增幅,奈米金探針偵測或光學偵測之所有實驗流程。實驗結果顯示這些微型全分析系統可於不遠的將來作為田間試驗或即時醫療之有用工具。


    As the society progresses, many rapidly-spread infectious diseases emerge because the distance between individuals is getting closer and closer. Not only do these infectious diseases threaten people health significantly but they also cause huge economic loss. The key factor to cease the spread of infectious diseases is early detection and diagnosis.Researchers have devoted to develop detection and diagnostic tools which are accurate and rapid. Among all detection tools, molecular diagnosis has been extensively employed in infectious disease detection because of its high sensitivity and high
    specificity. It may provide accurate and sensitive detection results which could be references for making proper treatment decisions. However, complicated processes,human errors and contamination prevent its potential to be an in-filed or point-of-care
    tool.
    To overcome the above-mentioned disadvantages, four different integrated microfluidic systems were developed to detect pathogens including bacteria and viruses
    from aquaculture, orchids and human joint fluidic sample directly are presented in this dissertation. By means of the knowledge from bio-Micro-Electro-Mechanical-System
    (Bio-MEMS), the integrated microfluidic systems integrated several microfluidic components into one single biochip to realize to concept of Lab-on-a-Chip (LOC).Furthermore, the integrated control systems can be used to perform all manual steps in a traditional biomedical experiment automatically with less human intervention to save labor and cost. With Bio-MEMS, human error and contamination can also be reduced. The performances of the integrated microfluidic systems were validated in this dissertation and the results showed that the purposed microfluidic systems were highly specific with sensitivities as low as 20 copies of plasmid deoxyribonucleic acid (DNA) for loop-mediated isothermal amplification (LAMP) with fluorescent detection, 35 pg of plasmid DNA for LAMP with turbidity detection, 200 colony formation units (CFU) for polymerase chain reaction (PCR) with fluorescent detection and 100 CFU for nanogold probe detection, respectively. Moreover, in this study, the whole
    experimental procedures including DNA/RNA/bacteria isolation, nucleic acid amplification by PCR or LAMP, nanogold probes detection or optical detection can
    be performed on an integrated control system which consisted of a temperature control module, a liquid transportation module and an optical detection module
    automatically within a short period of time. Based on the experiment data, these micro-total-analysis-systems (μTAS) are promising tools for in-field diagnosis or
    point-of-care in the near future.

    Abstract…………………………………………………………………………………I 中文摘要………………………………………………………………………………III 致謝……………………………………………………………………………………V Table of Contents……………………………………………VI List of Figures………………………………………………………………………VIII List of Tables……………………………………………XV Abbreviation and Nomenclature………………VIII Chapter 1: Introduction………………………………………1 1.1 Molecular diagnosis………………………………………………………………1 1.1.1 PCR…………………………………………………………………………3 1.1.2 LAMP………………………………………………………………………4 1.2 MEMS-based nucleic acid amplification using microfluidic technologies……4 1.2.1 Performing PCR in microfluidic systems……………………………………..9 1.2.2 Performing LAMP in microfluidic systems…………………………………10 1.3 Motivation and objectives………………………………………………………13 1.3.1 Rapid purification and detection of pathogens in agricultural species using LAMP on an integrated microfluidic system……………………………… 13 1.3.2 Direct purification and detection of viruses directly from the fresh leaves of Phalaenopsis orchid using an integrated microfluidic system ……...……...13 1.3.3 Rapid isolation and diagnosis of live bacteria from human joint fluids by using an integrated microfluidic system ……………………………………14 1.3.4 An integrated microfluidic system for rapid detection and typing of live bacteria from human joint fluidic samples …………………………………..15 1.4 Scope and structure of the dissertation…………………………………………..15 Chapter 2: Rapid purification and detection of pathogens in agricultural species using LAMP on an integrated microfluidic system ………………………17 2.1 Introduction………………………………………………..……………………17 2.2 Materials and methods………………………………………………………….21 2.2.1 Experimental procedure……………………………………….……………..21 2.2.2 Chip design…………………………………………………………………..23 2.2.3 Fabrication process…………………………………………………………25 2.2.4 Working principle of the pneumatic micro-pump …………………………26 2.2.5 Custom-made control system ………………………………………………27 2.2.6 Primer and nucleotide probe design ………………………………………29 2.2.7 Preparation of nucleotide-probe-conjugated magnetic beads……………….30 2.2.8 Positive control construction………………………………………………30 2.2.9 Preparation of infected fish samples………………………………………30 2.2.10 PCR ………………………………………………………………………31 2.2.11 Electrophoresis…………………………………………………………… 31 2.3 Results and discussion…………………………………………………………31 2.3.1. Performance of the pneumatic micropump…………………………………31 2.3.2. Performance of the custom-made control system…………………………32 2.3.3. Sensitivity…………………………………………………………………34 2.3.4. Detection of pathogen from fish samples…………………………………36 2.4 Summary…………………………………………………………39 Chapter 3: Direct purification and detection of viruses directly from the fresh leaves of a Phalaenopsis orchid using an integrated microfluidic system……………………………………………………………………40 3.1 Introduction…………………………………………… ………………………40 3.2 Materials and methods…………………………………………………………44 3.2.1 Experimental procedure……………………………………………………44 3.2.2 Chip design…………………………………………………………………46 3.2.3 Fabrication process…………………………………………………………49 3.2.4 The microfluidic system……………………………………………………50 3.2.5 Primer and nucleotide probe design………………………………………51 3.2.6 Preparation of nucleotide-probe-conjugated magnetic beads…………….….52 3.2.7 RNA extraction………………………………………………………………52 3.3 Results and Discussion………………………………………… ………………53 3.3.1 Performance of the integrated microfluidic chip…………………………….53 3.3.2 Performance of the optical detection unit……………………………………54 3.3.3 Optimum hybridization temperature of the magnetic beads coated with virus specific probes………………………………………………………………55 3.3.4 Sensitivity of the integrated microfluidic system……………………………57 3.3.5 Virus detection using fresh orchid leaves and the integrated microfluidic system……………………………………………………………………….59 3.4 Summary………………………………………………………63 Chapter 4: Rapid isolation and diagnosis of live bacteria from human joint fluids by using an integrated microfluidic system……………………………66 4.1 Introduction……………………………………………………………………66 4.2 Materials and methods……………………………………69 4.2.1 Experimental procedure……………………………………………69 4.2.2 Chip design and fabrication………………………………………………….72 4.2.3 Preparation of EMA………………………………………………………77 4.2.4 Preparation of vancomycin-conjugated magnetic beads……………………77 4.2.5 PCR primers and PCR reaction……………………………………………78 4.2.6 Preparation of dead bacteria…………………………………………………78 4.2.7 Positive control construction………………………………………………78 4.2.8 Clinical specimen……………………………………………………………79 4.2.9 Statistical analysis……………………………………………………………79 4.3 Results and discussion………………………………………80 4.3.1 The pumping rate of the transportation units…………………………80 4.3.2 Optimization of EMA pre-treatment of live bacteria diagnostic assay……81 4.3.3 LOD of the proposed system………………………………………………84 4.3.4 Clinical specimen tests……………………85 4.4 Summary………………………………………………………………………87 Chapter 5 An integrated microfluidic system for rapid detection and typing of live bacteria from human joint fluidic samples………………………………89 5.1 Introduction……………………………………………………………………89 5.2 Materials and methods…………………………………………………………92 5.2.1 Experimental procedures……………………………………………………92 5.2.2 Chip design…………………………………………………………………94 5.2.3 Preparation of nanogold-conjugated 16S probes……………………………97 5.2.4 Bacterial genomic DNA extraction…………………………………………98 5.2.5 PCR primers and PCR reaction……………………………………………98 5.3 Results and discussion…………………………………………………………100 5.3.1 Characterization of the integrated microfluidic chip………………………100 5.3.2 Detection of live bacteria using nanogold-conjugated 16S probes……….100 5.3.3 Detection of live bacteria on the proposed integrated microfluidic system..101 5.3.4 Typing of live bacteria using PCR reaction with specific primer sets……104 5.4 Summary………………………………………………………………………107 Chapter 6: Conclusions and future perspectives…………………………………108 References……………………………………………………………………………113 Publication lists………………………………………………………………………130

    1. E. R. Andrew and M. J. R. Hoch, S Afr J Sci, Magnetic-Resonance Imaging,1980, 76, 256-258.
    2. Pickerin.Rs, R. R. Hattery, G. W. Hartman and K. E. Holley, Radiology,Computed Tomography of Excised Kidney, 1974, 113, 643-647.
    3. W. T. Liberson, Am J Psychiat, Electroencephalography, 1965, 121, 636-640.
    4. D. Cohen, Science, Magnetoencephalography - Evidence of Magnetic Fields Produced by Alpha-Rhythm Currents, 1968, 161, 784-&.
    5. F. J. Conraths and G. Schares, Vet Parasitol, Validation of molecular-diagnostic techniques in the parasitological laboratory, 2006, 136, 91-98.
    6. R. Montironi, R. Mazzucchelli and M. Scarpelli, Eur Urol, Molecular techniques and prostate cancer diagnostic, 2003, 44, 390-400.
    7. Z. Fejfar, Int J Epidemiol, Surveillance and Monitoring of Cardiovascular-Disease - Assessment of Trends, 1976, 5, 77-81.
    8. D. C. Figge, Postgraduate medicine, Screening for Cancer: Technic and Application, 1965, 38, 152-156.
    9. W. M. Gooch, J Med Technol, Immunological Diagnosis of Infectious-Disease by Antigen-Detection in Urine, 1985, 2, 762-765.
    10. J. Compton, Nature, Nucleic-Acid Sequence-Based Amplification, 1991, 350, 91-92.
    11. K. Loens, D. Ursi, M. Ieven, P. van Aarle, P. Sillekens, P. Oudshoorn and H. Goossens, J Clin Microbiol, Detection of Mycoplasma pneumoniae in spiked
    114 clinical samples by nucleic acid sequence-based amplification, 2002, 40, 1339-1345.
    12. J. B. Mahony, X. Song, S. Chong, M. Faught, T. Salonga and J. Kapala, J Clin Microbiol, Evaluation of the NucliSens basic kit for detection of Chlamydia
    trcachomatis and Neisseria gonorrhoeae in genital tract specimens using nucleic acid sequence-based amplification of 16S rRNA, 2001, 39, 1429-1435.
    13. L. X. An, W. Tang, T. A. Ranalli, H. J. Kim, J. Wytiaz and H. M. Kong, J Biol Chem, Characterization of a thermostable UvrD helicase and its participation
    in helicase-dependent amplification, 2005, 280, 28952-28958.
    14. M. Vincent, Y. Xu and H. M. Kong, Embo Rep, Helicase-dependent isothermal DNA amplification, 2004, 5, 795-800.
    15. G. T. Walker, M. S. Fraiser, J. L. Schram, M. C. Little, J. G. Nadeau and D. P. Malinowski, Nucleic Acids Res, Strand Displacement Amplification - an
    Isothermal, Invitro DNA Amplification Technique, 1992, 20, 1691-1696.
    16. G. T. Walker, M. C. Little, J. G. Nadeau and D. D. Shank, P Natl Acad Sci USA, Isothermal Invitro Amplification of DNA by a Restriction Enzyme
    DNA-Polymerase System, 1992, 89, 392-396.
    17. K. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn and H. Erlich, Cold Spring Harb Sym, Specific Enzymatic Amplification of DNA Invitro - the Polymerase
    Chain-Reaction, 1986, 51, 263-273.
    18. W. Rychlik, W. J. Spencer and R. E. Rhoads, Nucleic Acids Res, Optimization of the Annealing Temperature for DNA Amplification Invitro, 1990, 18,6409-6412.
    115
    19. D. J. Sharkey, E. R. Scalice, K. G. Christy, S. M. Atwood and J. L. Daiss,Bio-Technol, Antibodies as Thermolabile Switches - High-Temperature
    Triggering for the Polymerase Chain-Reaction, 1994, 12, 506-509.
    20. A. Chien, D. B. Edgar and J. M. Trela, J Bacteriol, Deoxyribonucleic-Acid Polymerase from Extreme Thermophile Thermus-Aquaticus, 1976, 127,
    1550-1557.
    21. F. C. Lawyer, S. Stoffel, R. K. Saiki, S. Y. Chang, P. A. Landre, R. D.
    Abramson and D. H. Gelfand, PCR methods and applications, High-level
    expression, purification, and enzymatic characterization of full-length
    Thermus aquaticus DNA polymerase and a truncated form deficient in 5' to 3'
    exonuclease activity, 1993, 2, 275-287.
    22. T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N.
    Amino and T. Hase, Nucleic Acids Res, Loop-mediated isothermal
    amplification of DNA, 2000, 28.
    23. N. Tomita, Y. Mori, H. Kanda and T. Notomi, Nat Protoc, Loop-mediated
    isothermal amplification (LAMP) of gene sequences and simple visual
    detection of products, 2008, 3, 877-882.
    24. X. E. Fang, H. Chen, L. J. Xu, X. Y. Jiang, W. J. Wu and J. L. Kong, Lab
    Chip, A portable and integrated nucleic acid amplification microfluidic chip
    for identifying bacteria, 2012, 12, 1495-1499.
    25. C. M. Chang, W. H. Chang, C. H. Wang, J. H. Wang, J. D. Mai and G. B. Lee,
    Lab Chip, Nucleic acid amplification using microfluidic systems, 2013, 13,
    1225-1242.
    26. M. U. Kopp, A. J. de Mello and A. Manz, Science, Chemical amplification:
    Continuous-flow PCR on a chip, 1998, 280, 1046-1048.
    116
    27. A. Manz, D. J. Harrison, E. M. J. Verpoorte, J. C. Fettinger, A. Paulus, H.
    Ludi and H. M. Widmer, J Chromatogr, Planar Chips Technology for
    Miniaturization and Integration of Separation Techniques into Monitoring
    Systems - Capillary Electrophoresis on a Chip, 1992, 593, 253-258.
    28. A. J. deMello, Nature, Control and detection of chemical reactions in
    microfluidic systems, 2006, 442, 394-402.
    29. M. A. Belaud-Rotureau, M. Parrens, P. Dubus, J. C. Garroste, A. de Mascarel
    and J. P. Merlio, Modern Pathol, A comparative analysis of FISH, RT-PCR,
    PCR, and immunohistochemistry for the diagnosis of mantle cell lymphomas,
    2002, 15, 517-525.
    30. T. Watkins-Riedel, M. Woegerbauer, D. Hollemann and P. Hufnagl, Diagn
    Micr Infec Dis, Rapid diagnosis of enterovirus infections by real-time PCR on
    the LightCycler using the TaqMan format, 2002, 42, 99-105.
    31. H. Mocharla, R. Mocharla and M. E. Hodes, Gene, Coupled Reverse
    Transcription-Polymerase Chain-Reaction (Rt-Pcr) as a Sensitive and Rapid
    Method for Isozyme Genotyping, 1990, 93, 271-275.
    32. Z. Zhu, G. Jenkins, W. H. Zhang, M. X. Zhang, Z. C. Guan and C. Y. J. Yang,
    Anal Bioanal Chem, Single-molecule emulsion PCR in microfluidic droplets,
    2012, 403, 2127-2143.
    33. Y. H. Chang, G. B. Lee, F. C. Huang, Y. Y. Chen and J. L. Lin, Biomed
    Microdevices, Integrated polymerase chain reaction chips utilizing digital
    microfluidics, 2006, 8, 215-225.
    34. K. Y. Lien, W. C. Lee, H. Y. Lei and G. B. Lee, Biosens Bioelectron,
    Integrated reverse transcription polymerase chain reaction systems for virus
    detection, 2007, 22, 1739-1748.
    117
    35. C. H. Tai, J. W. Shin, T. Y. Chang, S. K. Hsiung, C. C. Lin and G. B. Lee,
    Microfluid Nanofluid, An integrated microfluidic system capable of sample
    pretreatment and hybridization for microarrays, 2011, 10, 999-1009.
    36. Y. Hataoka, L. H. Zhang, Y. Mori, N. Tomita, T. Notomi and Y. Baba, Anal
    Chem, Analysis of specific gene by integration of isothermal amplification and
    electrophoresis on poly(methyl methacrylate) microchips, 2004, 76,
    3689-3693.
    37. X. E. Fang, H. Chen, S. N. Yu, X. Y. Jiang and J. L. Kong, Anal Chem,
    Predicting Viruses Accurately by a Multiplex Microfluidic Loop-Mediated
    Isothermal Amplification Chip, 2011, 83, 690-695.
    38. X. E. Fang, Y. Y. Liu, J. L. Kong and X. Y. Jiang, Anal Chem, Loop-Mediated
    Isothermal Amplification Integrated on Microfluidic Chips for Point-of-Care
    Quantitative Detection of Pathogens, 2010, 82, 3002-3006.
    39. C. C. Liu, M. G. Mauk and H. H. Bau, Microfluid Nanofluid, A disposable,
    integrated loop-mediated isothermal amplification cassette with thermally
    actuated valves, 2011, 11, 209-220.
    40. C. C. Liu, M. G. Mauk, R. Hart, X. B. Qiu and H. H. Bau, Lab Chip, A
    self-heating cartridge for molecular diagnostics, 2011, 11, 2686-2692.
    41. F. Ahmad, G. Seyrig, D. M. Tourlousse, R. D. Stedtfeld, J. M. Tiedje and S. A.
    Hashsham, Biomed Microdevices, A CCD-based fluorescence imaging system
    for real-time loop-mediated isothermal amplification-based rapid and
    sensitive detection of waterborne pathogens on microchips, 2011, 13,
    929-937.
    42. K. W. Hsieh, A. S. Patterson, B. S. Ferguson, K. W. Plaxco and H. T. Soh,
    Angew Chem Int Edit, Rapid, Sensitive, and Quantitative Detection of
    118
    Pathogenic DNA at the Point of Care through Microfluidic Electrochemical
    Quantitative Loop-Mediated Isothermal Amplification, 2012, 51, 4896-4900.
    43. D. M. Tourlousse, F. Ahmad, R. D. Stedtfeld, G. Seyrig, J. M. Tiedje and S. A.
    Hashsham, Biomed Microdevices, A polymer microfluidic chip for quantitative
    detection of multiple water- and foodborne pathogens using real-time
    fluorogenic loop-mediated isothermal amplification, 2012, 14, 769-778.
    44. C. H. Wang, K. Y. Lien, T. Y. Wang, T. Y. Chen and G. B. Lee, Biosens
    Bioelectron, An integrated microfluidic
    loop-mediated-isothermal-amplification system for rapid sample
    pre-treatment and detection of viruses, 2011, 26, 2045-2052.
    45. C. H. Wang, K. Y. Lien, J. J. Wu and G. B. Lee, Lab Chip, A magnetic
    bead-based assay for the rapid detection of methicillin-resistant
    Staphylococcus aureus by using a microfluidic system with integrated
    loop-mediated isothermal amplification, 2011, 11, 1521-1531.
    46. R. D. Stedtfeld, D. M. Tourlousse, G. Seyrig, T. M. Stedtfeld, M. Kronlein, S.
    Price, F. Ahmad, E. Gulari, J. M. Tiedje and S. A. Hashsham, Lab Chip,
    Gene-Z: a device for point of care genetic testing using a smartphone, 2012,
    12, 1454-1462.
    47. S. Y. Lee, J. G. Huang, T. L. Chuang, J. C. Sheu, Y. K. Chuang, M. Holl, D. R.
    Meldrum, C. N. Lee and C. W. Lin, Sensor Actuat B-Chem, Compact optical
    diagnostic device for isothermal nucleic acids amplification, 2008, 133,
    493-501.
    48. S. Y. Lee, C. N. Lee, H. Mark, D. R. Meldrum and C. W. Lin, Sensor Actuat
    B-Chem, Efficient, specific, compact hepatitis B diagnostic device: Optical
    119
    detection of the hepatitis B virus by isothermal amplification, 2007, 127,
    598-605.
    49. C. C. Liu, E. Geva, M. Mauk, X. B. Qiu, W. R. Abrams, D. Malamud, K.
    Curtis, S. M. Owen and H. H. Bau, Analyst, An isothermal amplification
    reactor with an integrated isolation membrane for point-of-care detection of
    infectious diseases, 2011, 136, 2069-2076.
    50. M. Safavieh, M. U. Ahmed, M. Tolba and M. Zourob, Biosens Bioelectron,
    Microfluidic electrochemical assay for rapid detection and quantification of
    Escherichia coli, 2012, 31, 523-528.
    51. W. H. Chang, S. Y. Yang, C. H. Wang, M. A. Tsai, P. C. Wang, T. Y. Chen, S.
    C. Chen and G. B. Lee, Sensor Actuat B-Chem, Rapid isolation and detection
    of aquaculture pathogens in an integrated microfluidic system using
    loop-mediated isothermal amplification, 2013, 180, 96-106.
    52. E. Hernandez, J. Figueroa and C. Iregui, J Fish Dis, Streptococcosis on a red
    tilapia, Oreochromis sp., farm: a case study, 2009, 32, 247-252.
    53. L. Dalla Valle, V. Toffolo, M. Lamprecht, C. Maltese, G. Bovo, P. Belvedere
    and L. Colombo, Vet Microbiol, Development of a sensitive and quantitative
    diagnostic assay for fish nervous necrosis virus based on two-target real-time
    PCR, 2005, 110, 167-179.
    54. A. K. Dhar, M. M. Roux and K. R. Klimpel, J Virol Methods, Quantitative
    assay for measuring the Taura syndrome virus and yellow head virus load in
    shrimp by real-time RT-PCR using SYBR Green chemistry, 2002, 104, 69-82.
    55. A. Eldar, Y. Bejerano, A. Livoff, A. Horovitcz and H. Bercovier, Vet
    Microbiol, Experimental Streptococcal Meningoencephalitis in Cultured Fish,
    1995, 43, 33-40.
    120
    56. J. J. Evans, P. H. Klesius, P. M. Glibert, C. A. Shoemaker, M. A. Al Sarawi, J.
    Landsberg, R. Duremdez, A. Al Marzouk and S. Al Zenki, J Fish Dis,
    Characterization of beta-haemolytic Group B Streptococcus agalactiae in
    cultured seabream, Sparus auratus L., and wild mullet, Liza klunzingeri (Day),
    in Kuwait, 2002, 25, 505-513.
    57. J. J. Evans, P. H. Klesius, D. J. Pasnik and J. F. Bohnsack, Emerg Infect Dis,
    Human Streptococcus agalactiae Isolate in Nile Tilapia (Oreochromis
    niloticus), 2009, 15, 774-776.
    58. J. J. Evans, D. J. Pasnik and P. H. Klesius, Vet Microbiol, A commercial rapid
    optical immunoassay detects Streptococcus agalactiae from aquatic cultures
    and clinical specimens, 2010, 144, 422-428.
    59. S. L. Abbott, W. K. W. Cheung and J. M. Janda, J Clin Microbiol, The genus
    Aeromonas: Biochemical characteristics, atypical reactions, and phenotypic
    identification schemes, 2003, 41, 2348-2357.
    60. S. L. Angka, T. J. Lam and Y. M. Sin, Aquaculture, Some Virulence
    Characteristics of Aeromonas-Hydrophila in Walking Catfish
    (Clarias-Gariepinus), 1995, 130, 103-112.
    61. M. H. Rahman, S. Suzuki and K. Kawai, J Appl Ichthyol, The effect of
    temperature on Aeromonas hydrophila infection in goldfish, Carassius
    auratus, 2001, 17, 282-285.
    62. S. Longyant, K. Chaiyasittrakul, S. Rukpratanporn, P. Chaivisuthangkura and
    P. Sithigorngul, J Fish Dis, Simple and direct detection of Aeromonas
    hydrophila infection in the goldfish, Carassius auratus (L.), by dot blotting
    using specific monoclonal antibodies, 2010, 33, 973-984.
    121
    63. O. Lazcka, F. J. Del Campo and F. X. Munoz, Biosens Bioelectron, Pathogen
    detection: A perspective of traditional methods and biosensors, 2007, 22,
    1205-1217.
    64. H. Soliman and M. El-Matbouli, J Virol Methods, Immunocapture and direct
    binding loop mediated isothermal amplification simplify molecular diagnosis
    of Cyprinid herpesvirus-3, 2009, 162, 91-95.
    65. Z. X. Liu, H. Liu, X. Y. Xie, J. Q. He, T. R. Luo and Y. Teng, J Virol Methods,
    Evaluation of a loop-mediated isothermal amplification assay for rapid
    diagnosis of soft-shelled turtle iridovirus, 2011, 173, 328-333.
    66. Y. Q. Wang, Z. H. Kang, Y. L. Gao, L. T. Qin, L. Chen, Q. Wang, J. K. Li, H.
    L. Gao, X. L. Qi, H. Lin and X. M. Wang, J Virol Methods, Development of
    loop-mediated isothermal amplification for rapid detection of avian leukosis
    virus subgroup A, 2011, 173, 31-36.
    67. Z. Y. Chen, Y. X. Liao, X. M. Ke, J. Zhou, Y. X. Chen, L. L. Gao, Q. Chen
    and S. Y. Yu, Mol Biol Rep, Comparison of reverse transcription
    loop-mediated isothermal amplification, conventional PCR and real-time PCR
    assays for Japanese encephalitis virus, 2011, 38, 4063-4070.
    68. A. K. Reddy, P. K. Balne, R. K. Reddy, A. Mathai and I. Kaur, J Clin
    Microbiol, Development and Evaluation of Loop-Mediated Isothermal
    Amplification Assay for Rapid and Inexpensive Detection of Cytomegalovirus
    DNA in Vitreous Specimens from Suspected Cases of Viral Retinitis, 2010, 48,
    2050-2052.
    69. I. Gunimaladevi, T. Kono, M. N. Venugopal and M. Sakai, J Fish Dis,
    Detection of koi herpesvirus in common carp, Cyprinus carpio L., by
    loop-mediated isothermal amplification, 2004, 27, 583-589.
    122
    70. H. Soliman and M. El-Matbouli, Virol J, An inexpensive and rapid diagnostic
    method of Koi Herpesvirus (KHV) infection by loop-mediated isothermal
    amplification, 2005, 2, 83.
    71. L. Cheng, C. Y. Chen, M. A. Tsai, P. C. Wang, J. P. Hsu, R. S. Chern and S. C.
    Chen, J Fish Dis, Koi herpesvirus epizootic in cultured carp and koi, Cyprinus
    carpio L., in Taiwan, 2011, 34, 547-554.
    72. M. U. Ahmed, M. Saito, M. M. Hossain, S. R. Rao, S. Furui, A. Hino, Y.
    Takamura, M. Takagi and E. Tamiya, Analyst, Electrochemical genosensor for
    the rapid detection of GMO using loop-mediated isothermal amplification,
    2009, 134, 966-972.
    73. C. H. Weng, K. Y. Lien, S. Y. Yang and G. B. Lee, Microfluid Nanofluid, A
    suction-type, pneumatic microfluidic device for liquid transport and mixing,
    2011, 10, 301-310.
    74. S. Y. Yang, F. Y. Cheng, C. S. Yeh and G. B. Lee, Microfluid Nanofluid,
    Size-controlled synthesis of gold nanoparticles using a micro-mixing system,
    2010, 8, 303-311.
    75. S. Rozen and H. J. Skaletsky, in Bioinformatics methods and protocols:
    methods in molecular biology, eds. S. Krawetz and S. Misener, Humana Press,
    Totowa, NJ, 2000, pp. 365-386.
    76. T. L. Hawkins, T. Oconnormorin, A. Roy and C. Santillan, Nucleic Acids Res,
    DNA Purification and Isolation Using a Solid-Phase, 1994, 22, 4543-4544.
    77. J. J. Evans, P. H. Klesius and C. A. Shoemaker, Vaccine, Efficacy of
    Streptococcus agalactiae (group B) vaccine in tilapia (Oreochromis niloticus)
    by intraperitoneal and bath immersion administration, 2004, 22, 3769-3773.
    123
    78. K. Das Mahapatra, B. Gjerde, P. K. Sahoo, J. N. Saha, A. Barat, M. Sahoo, B.
    R. Mohanty, J. Odegard, M. Rye and R. Salte, Aquaculture, Genetic variations
    in survival of rohu carp (Labeo rohita, Hamilton) after Aeromonas hydrophila
    infection in challenge tests, 2008, 279, 29-34.
    79. M. El-Matbouli and H. Soliman, Res Vet Sci, Transmission of Cyprinid
    herpesvirus-3 (CyHV-3) from goldfish to naive common carp by cohabitation,
    2011, 90, 536-539.
    80. L. Acerete, E. Espinosa, A. Josa and L. Tort, Aquaculture, Physiological
    response of hybrid striped bass subjected to Photobacterium damselae subsp
    piscicida, 2009, 298, 16-23.
    81. A. J. C. Eun and S. M. Wong, Phytopathology, Detection of Cymbidium
    mosaic potexvirus and odontoglossum ringspot tobamovirus using
    immuno-capillary zone electrophoresis, 1999, 89, 522-528.
    82. M. L. Seoh, S. M. Wong and L. Zhang, J Virol Methods, Simultaneous
    TD/RT-PCR detection of cymbidium mosaic potexvirus and odontoglossum
    ringspot tobamovirus with a single pair of primers, 1998, 72, 197-204.
    83. K. Y. Lien and G. B. Lee, Analyst, Miniaturization of molecular biological
    techniques for gene assay, 2010, 135, 1499-1518.
    84. K. Y. Lien, S. H. Lee, T. J. Tsai, T. Y. Chen and G. B. Lee, Microfluid
    Nanofluid, A microfluidic-based system using reverse transcription
    polymerase chain reactions for rapid detection of aquaculture diseases, 2009,
    7, 795-806.
    85. F. W. Zettler, N. J. Ko, G. C. Wisler, M. S. Elliott and S. M. Wong, Plant Dis,
    Viruses of Orchids and Their Control, 1990, 74, 621-626.
    124
    86. M. S. Lee, M. J. Yang, Y. C. Hseu, G. H. Lai, W. T. Chang, Y. H. Hsu and M.
    K. Lin, J Virol Methods, One-step reverse transcription loop-mediated
    isothermal amplification assay for rapid detection of Cymbidium mosaic virus,
    2011, 173, 43-48.
    87. C. H. Huang, G. H. Lai, M. S. Lee, W. H. Lin, Y. Y. Lien, S. C. Hsueh, J. Y.
    Kao, W. T. Chang, T. C. Lu, W. N. Lin, H. J. Chen and M. S. Lee, J Appl
    Microbiol, Development and evaluation of a loop-mediated isothermal
    amplification assay for rapid detection of chicken anaemia virus, 2010, 108,
    917-924.
    88. L. Lam, S. Sakakihara, K. Ishizuka, S. Takeuchi, H. F. Arata, H. Fujita and H.
    Noji, Biomed Microdevices, Loop-mediated isothermal amplification of a
    single DNA molecule in polyacrylamide gel-based microchamber, 2008, 10,
    539-546.
    89. D. Thomson and R. G. Dietzgen, J Virol Methods, Detection of DNA and Rna
    Plant-Viruses by Pcr and Rt-Pcr Using a Rapid Virus Release Protocol
    without Tissue Homogenization, 1995, 54, 85-95.
    90. W. H. Chang, S. Y. Yang, C. L. Lin, C. H. Wang, P. C. Li, T. Y. Chen, F. J.
    Jan and G. B. Lee, Nanomed-Nanotechnol, Detection of viruses directly from
    the fresh leaves of a Phalaenopsis orchid using a microfluidic system, 2013, 9,
    1274-1282.
    91. C. Napoli and C. J. Lemieux, R., The Plant Cell, lntroduction of a chimeric
    chalcone synthase gene into petunia results in reversible co-suppression of
    homologous genes Ín trans., 1990, 2, 279-289.
    125
    92. W. Y. Matar, S. M. Jafari, C. Restrepo, M. Austin, J. J. Purtill and J. Parvizi, J
    Bone Joint Surg Am, Preventing Infection in Total Joint Arthroplasty, 2010,
    92A, 36-46.
    93. M. Schafroth, W. Zimmerli, M. Brunazzi and P. E. Ochsner, in Total hip
    replacement, ed. P. E. Ochsner, Springer Verlag, Berlin, 2003, ch. 5, pp.
    65-90.
    94. T. W. Bauer, J. Parvizi, N. Kobayashi and V. Krebs, J Bone Joint Surg Am,
    Diagnosis of periprosthetic infection, 2006, 88A, 869-882.
    95. R. L. Barrack, J Arthroplasty, Rush pin technique for temporary
    antibiotic-impregnated cement prosthesis for infected total hip arthroplasty,
    2002, 17, 600-603.
    96. A. Trampuz, J. M. Steckelberg, D. R. Osmon, F. R. Cockerill, A. D. Hanssen
    and R. Patel, Rev Med Microbiol, Advances in the laboratory diagnosis of
    prosthetic joint infection, 2003, 14, 1-14.
    97. E. F. Berbari, C. Marculescu, I. Sia, B. D. Lahr, A. D. Hanssen, J. M.
    Steckelberg, R. Gullerud and D. R. Osmon, Clin Infect Dis, Culture-negative
    prosthetic joint infection, 2007, 45, 1113-1119.
    98. B. D. Mariani and R. S. Tuan, Mol Med Today, Advances in the diagnosis of
    infection in prosthetic joint implants, 1998, 4, 207-213.
    99. W. Zimmerli, A. Trampuz and P. E. Ochsner, New Engl J Med, Current
    concepts: Prosthetic-joint infections, 2004, 351, 1645-1654.
    100. Y. Achermann, M. Vogt, M. Leunig, J. Wust and A. Trampuz, J Clin
    Microbiol, Improved Diagnosis of Periprosthetic Joint Infection by Multiplex
    PCR of Sonication Fluid from Removed Implants, 2010, 48, 1208-1214.
    126
    101. K. E. Dempsey, M. P. Riggio, A. Lennon, V. E. Hannah, G. Ramage, D. Allan
    and J. Bagg, Arthritis Res Ther, Identification of bacteria on the surface of
    clinically infected and non-infected prosthetic hip joints removed during
    revision arthroplasties by 16S rRNA gene sequencing and by microbiological
    culture, 2007, 9, R46.
    102. C. Dora, M. Altwegg, C. Gerber, E. C. Bottger and R. Zbinden, J Clin
    Microbiol, Evaluation of conventional microbiological procedures and
    molecular genetic techniques for diagnosis of infections in patients with
    implanted orthopedic devices, 2008, 46, 824-825.
    103. M. J. Levine, B. A. Mariani, R. S. Tuan and R. E. Booth, Jr., J Arthroplasty,
    Molecular genetic diagnosis of infected total joint arthroplasty, 1995, 10,
    93-94.
    104. K. Panousis, P. Grigoris, I. Butcher, B. Rana, J. H. Reillyl and D. L. Hamblen,
    Acta Orthop, Poor predictive value of broad-range PCR for the detection of
    arthroplasty infection in 92 cases, 2005, 76, 341-346.
    105. K. E. Piper, M. J. Jacobson, R. H. Cofield, J. W. Sperling, J. Sanchez-Sotelo,
    D. R. Osmon, A. McDowell, S. Patrick, J. M. Steckelberg, J. N. Mandrekar, M.
    F. Sampedro and R. Patel, J Clin Microbiol, Microbiologic Diagnosis of
    Prosthetic Shoulder Infection by Use of Implant Sonication, 2009, 47,
    1878-1884.
    106. P. F. Bergin, J. D. Doppelt, W. G. Hamilton, G. E. Mirick, A. E. Jones, S.
    Sritulanondha, J. M. Helm and R. S. Tuan, J Bone Joint Surg Am, Detection of
    Periprosthetic Infections With Use of Ribosomal RNA-Based Polymerase
    Chain Reaction, 2010, 92A, 654-663.
    127
    107. Y. H. Liu, C. H. Wang, J. J. Wu and G. B. Lee, Biomicrofluidics, Rapid
    detection of live methicillin-resistant Staphylococcus aureus by using an
    integrated microfluidic system capable of ethidium monoazide pre-treatment
    and molecular diagnosis, 2012, 6, 034119-034111.
    108. D. H. Williams and B. Bardsley, Angew Chem Int Edit, The vancomycin group
    of antibiotics and the fight against resistant bacteria, 1999, 38, 1173-1193.
    109. A. J. Kell, G. Stewart, S. Ryan, R. Peytavi, M. Boissinot, A. Huletsky, M. G.
    Bergeron and B. Simard, Acs Nano, Vancomycin-modified nanoparticles for
    efficient targeting and preconcentration of Gram-positive and Gram-negative
    bacteria, 2008, 2, 1777-1788.
    110. C. H. Wang, C. J. Chang, J. J. Wu and G. B. Lee, Nanomed-Nanotechnol, An
    integrated microfluidic device utilizing vancomycin conjugated magnetic
    beads and nanogold-labeled specific nucleotide probes for rapid pathogen
    diagnosis, 2014, 10, 809-818.
    111. J. Pootoolal, J. Neu and G. D. Wright, Annual review of pharmacology and
    toxicology, Glycopeptide antibiotic resistance, 2002, 42, 381-408.
    112. W. H. Chang, C. H. Wang, S. Y. Yang, Y. C. Lin, J. J. Wu, M. S. Lee and G.
    B. Lee, Lab Chip, Rapid isolation and diagnosis of live bacteria from human
    joint fluids by using an integrated microfluidic system, 2014, DOI:
    10.1039/C4LC00471J.
    113. R. Y. Huang, M. Fang, Y. S. Luo, H. C. Liu, Q. R. Lu and G. Q. Wang,
    Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical
    science edition, [EMA-pCR detection of enterohemorrhagic Eschrichia coli
    O157:H7], 2014, 45, 152-155.
    128
    114. K. Rudi, B. Moen, S. M. Dromtorp and A. L. Holck, Applied and
    environmental microbiology, Use of ethidium monoazide and PCR in
    combination for quantification of viable and dead cells in complex samples,
    2005, 71, 1018-1024.
    115. A. Nocker, C. Y. Cheung and A. K. Camper, Journal of microbiological
    methods, Comparison of propidium monoazide with ethidium monoazide for
    differentiation of live vs. dead bacteria by selective removal of DNA from dead
    cells, 2006, 67, 310-320.
    116. M. Fernandez-Sampedro, M. F. Fernandez, R. G. Renedo, C. Salas-Venero, C.
    Fariñas-Alvarez, J. Figols, J. Gomez, L. Martinez-Martinez and M. C.
    Fariñas, Clin Microbiol Infect, List #123, 2012, 18, 729.
    117. M. S. Lee, W. H. Chang, S. C. Chen, P. H. Hsieh, H. N. Shih, S. N. Ueng and
    G. B. Lee, Sci World J, Molecular Diagnosis of Periprosthetic Joint Infection
    by Quantitative RT-PCR of Bacterial 16S Ribosomal RNA, 2013, DOI: Artn
    950548
    Doi 10.1155/2013/950548, 950548.
    118. X. H. Qu, Z. J. Zhai, H. W. Li, H. W. Li, X. Q. Liu, Z. N. Zhu, Y. Wang, G.
    W. Liu and K. R. Dai, J Clin Microbiol, PCR-Based Diagnosis of Prosthetic
    Joint Infection, 2013, 51, 2742-2746.
    119. C. Cazanave, K. E. Greenwood-Quaintance, A. D. Hanssen, M. J. Karau, S. M.
    Schmidt, E. O. G. Urena, J. N. Mandrekar, D. R. Osmon, L. E. Lough, B. S.
    Pritt, J. M. Steckelberg and R. Patel, J Clin Microbiol, Rapid Molecular
    Microbiologic Diagnosis of Prosthetic Joint Infection, 2013, 51, 2280-2287.
    120. R. Suebsing, P. Prombun, J. Srisala and W. Kiatpathomchai, J Appl Microbiol,
    Loop-mediated isothermal amplification combined with colorimetric nanogold
    129
    for detection of the microsporidian Enterocytozoon hepatopenaei in penaeid
    shrimp, 2013, 114, 1254-1263.
    121. P. Bakthavathsalam, V. K. Rajendran and J. A. B. Mohammed, J
    Nanobiotechnol, A direct detection of Escherichia coli genomic DNA using
    gold nanoprobes, 2012, 10.
    122. K. Aslan, J. R. Lakowicz and C. D. Geddes, Analytical biochemistry,
    Nanogold-plasmon-resonance-based glucose sensing, 2004, 330, 145-155.
    123. M. Ploschner, T. Cizmar, M. Mazilu, A. Di Falco and K. Dholakia, Nano Lett,
    Bidirectional Optical Sorting of Gold Nanoparticles, 2012, 12, 1923-1927.
    124. H. D. Hill and C. A. Mirkin, Nat Protoc, The bio-barcode assay for the
    detection of protein and nucleic acid targets using DTT-induced ligand
    exchange, 2006, 1, 324-336.
    125. L. R. Volpatti and A. K. Yetisen, Trends Biotechnol, Commercialization of
    microfluidic devices, 2014, 32, 347-350.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE