簡易檢索 / 詳目顯示

研究生: 張瑞娟
Chang,Jui-Chuan
論文名稱: 低溫自我束縛共燒陶瓷系統
Self-Constrained Sintering of Low Temperature Cofired Ceramic Systems
指導教授: 簡朝和
Jean,Jau-Ho
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 220
中文關鍵詞: 束縛燒結低溫共燒陶瓷
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文旨在探討自我束縛低溫共燒陶瓷的設計概念及材料於束縛燒結時的緻密行為。首先,於第一章先回顧低溫共燒陶瓷基板的發展歷程,及束縛燒結技術所遇到的問題。在第二章中,首先探討自我束縛燒結系統之構成材料La2O3-B2O3-CaO玻璃 Al2O3(LBCGA)的結晶動力學及其機制。此介電玻璃陶瓷系統在熱處理的過程中,會先後生成LaBO3與LaAl2.03(B4O10)O0.54結晶相。其中低溫結晶相LaBO3的生成時機對系統的緻密行為影響甚鉅,而由Avrami分析法所得之Avrami指數與結晶活化能的分析結果可判定LaBO3結晶為三維的介面反應所控制,而此結論由非等溫的DTA分析法與晶體成長速率的結果得到進一步的確認。
    接著,在第三章中,藉由理論的推導與適當的實驗設計成功地將LBCGA於自由及束縛燒結時的單軸向黏度值精確地量測出來,且準確地計算出使LBCGA於束縛燒結時的緻密速率與自由燒結時相同,所需施加的外加應力值。LBCGA於自由及束縛燒結時的單軸向黏度值在LaBO3結晶產生前皆隨著溫度的升高而呈現下降的趨勢,唯束縛燒結時的黏度值較自由燒結時來得大。由燒結活化能及平面張應力的分析結果顯示,LBCGA的緻密機制並沒有因為外加的張應力而發生改變,仍為黏滯流動所控制,而造成LBCGA於束縛燒結時緻密速率下降的原因乃束縛燒結所產生的平面張應力阻礙了材料的流動,使得整體的黏度提高,緻密速率因而變慢。
    在第四章中,由LBCGA生胚薄片及Al2O3生胚薄片所組成之自我束縛低溫共燒陶瓷系統被成功地研發出來。由於Al2O3的燒結溫度遠高於LBCGA,因此當LBCGA燒結時,尚未燒結之Al2O3層可有效地阻止LBCGA層於側向上的收縮,而待溫度繼續升高,LBCGA層中經結晶後所殘餘之玻璃相開始藉由毛細作用力滲透進入Al2O3層中使之緻密化,此時已緻密且結晶之LBCGA可有效地阻止Al2O3層於側向上的收縮,如此交互束縛的結果使得LBCGA/Al2O3自我束縛系統在整個共燒的過程中僅於x、y方向產生約0.6%的微量收縮。由活化能的量測結果顯示玻璃滲透進入Al2O3層的行為乃受玻璃的黏滯流動所控制,而利用理論計算各溫度下不同厚度之Al2O3生胚滲透所需的時間與實驗量測值相近。然而,當玻璃的滲透層太厚時,則會導致LBCGA層出現去緻密化的現象。
    在第五章中,探討構成自我束縛燒結系統的另一組成材料 BaO-CaO-TiO2-SiO2玻璃 Zn2SiO4 Al2O3(BZA)於束縛燒結時的緻密行為。BZA於束縛與自由燒結時之單軸向黏度值隨溫度變化的趨勢和LBCGA相同,皆隨著燒結溫度的提高而呈現下降的趨勢,且束縛燒結時的黏度值亦較自由燒結時來得大。經由燒結活化能及平面張應力的量測,顯示束縛燒結時黏度值上升的主因亦來自於束縛燒結所產生的平面張應力阻礙了材料的流動所致。雖然BZA於束縛燒結時的緻密速率因平面張應力的影響而較自由燒結時來得緩慢,但是在玻璃結晶溫度與玻璃轉化溫度間的溫度範圍足夠大的條件下,使得BZA系統無論於自由燒結抑或是束縛燒結時皆能達到極佳的緻密度。反觀LBCGA於束縛燒結時則需升溫速率高於10℃/min的情形下才可達到緻密。
    最後,為了改善LBCGA/Al2O3自我束縛燒結系統因玻璃滲透而導致LBCGA產生去緻密化的情形,因此改以BZA取代Al2O3的方式另行設計出LBCGA/BZA自我束縛燒結系統。由於LBCGA和BZA的燒結溫度區間沒有重疊,因此在共燒的過程中彼此可以交互扮演束縛層的角色,使LBCGA/BZA多層結構在共燒後僅在x軸向產生約1%的微量收縮。此外,因LBCGA及BZA乃利用系統本身含有的玻璃來達到緻密化,並不需依賴另一方的供給,因此可有效地避免如LBCGA/Al2O3自我束縛燒結系統因玻璃滲透而導致LBCGA產生去緻密化的問題。此外,由於LBCGA/BZA共燒時所產生的不匹配應力遠小於燒結驅動力,因此試片在共燒後並沒有觀察到有脫層和破裂等缺陷產生。


    圖表索引 iv 第一章 簡介 1 1.1 陶瓷基板(ceramic substrate)的發展歷程 1 1.2 基材的選擇 3 1.3 低溫共燒陶瓷製程 5 1.3.1 刮刀成型(tape casting) 6 1.3.2 沖片(blanking) 6 1.3.3 打孔(via punching) 7 1.3.4 金屬填孔(via filling)和網印(screen printing) 7 1.3.5 疊壓(lamination) 8 1.3.6共燒(co-firing) 8 1.3.6.1 不匹配應力(mismatch stress) 9 1.3.6.2 束縛燒結-施加外加應力 15 1.3.6.3 束縛燒結-束縛在不收縮的生胚薄片或剛性基板上 17 1.4 論文緣起 20 參考文獻 23 第二章 La2O3-B2O3-CaO玻璃 Al2O3系統的結晶動力學及機制 31 2.1 前言 32 2.2 實驗方法 35 2.3 結果與討論 37 2.3.1 結晶相的確認 37 2.3.2 緻密化與升溫速率的關係 37 2.3.3結晶動力學及機制 39 2.3.3.1 成核 39 2.3.3.2 結晶動力學-等溫熱處理法 41 2.3.3.3結晶動力學-非等溫熱處理法 43 2.3.3.4 結晶成長 45 2.3.4結晶對材料性質的影響 46 2.4 結論 48 參考文獻 49 第三章 使La2O3-B2O3-CaO玻璃 Al2O3系統於束縛燒結時達到緻密化 72 所需施加的應力值 3.1 前言 73 3.2 實驗方法 75 3.3 實驗結果 77 3.3.1 束縛燒結試片結構組成的影響 77 3.3.2 相對燒結密度 78 3.3.3 外加應力 79 3.4 討論 81 3.4.1 黏度量測 81 3.4.1.1 自由燒結 81 3.4.1.2 束縛燒結 83 3.4.2 燒結活化能 87 3.4.3 平面張應力 88 3.4.4 理論計算外加應力 89 3.5 結論 92 參考文獻 93 第四章 La2O3-B2O3-CaO玻璃 Al2O3/Al2O3自我束縛燒結系統 114 4.1 前言 115 4.2 實驗方法 117 4.3 結果與討論 119 4.3.1 收縮率 119 4.3.2 自我束縛燒結機制 121 4.3.3 滲透機制 122 4.3.4 理論計算滲透所需的時間 124 4.3.5 滲透對緻密度的影響 125 4.4 結論 126 參考文獻 127 第五章 使BaO-CaO-TiO2-SiO2玻璃 Zn2SiO4 Al2O3系統 140 於束縛燒結時達到緻密化所需施加的應力值 5.1 前言 141 5.2 實驗方法 142 5.3 實驗結果 144 5.3.1 結晶相的確認 144 5.3.2 緻密化與升溫速率的關係 144 5.3.3 自由與束縛燒結時的相對燒結密度 146 5.3.4 外加應力 147 5.4 討論 149 5.4.1 黏度量測 149 5.4.1.1 自由燒結 149 5.4.1.2 束縛燒結 151 5.4.2 燒結活化能 153 5.4.3 平面張應力 155 5.4.4 理論計算外加應力 156 5.5 結論 158 參考文獻 159 第六章 La2O3-B2O3-CaO玻璃 Al2O3 / BaO-CaO-TiO2-SiO2玻璃 181 Zn2SiO4 Al2O3自我束縛燒結系統 6.1 前言 182 6.2 實驗方法 183 6.3 實驗結果 185 6.3.1各組成材料的收縮行為 185 6.3.2自我束縛燒結系統的收縮行為 186 6.3.3 曲率觀察 188 6.4 討論 190 6.4.1 不匹配應力 190 6.4.2 燒結驅動力 194 6.4.3 自我束縛燒結系統之設計準則 195 6.5 結論 196 參考文獻 197 第七章 總結 217 圖表索引 圖1-1 低溫共燒陶瓷的製作流程 圖2-1 LBCGA於不同升溫速率下的DTA分析結果 圖2-2 LBCGA以5℃/min升溫至675-850℃持溫30分鐘後的XRD結果 圖2-3 LaBO3 結晶溫度與玻璃轉化溫度間的差值隨升溫速率變化的情形 圖2-4 LBCGA於不同升溫速率下,燒結緻密度隨溫度變化的情形 圖2-5 LBCGA於725℃燒結20分鐘後的背向散射影像 圖2-6 由圖2-5 SEM照片中之(A)黑色區,(B)灰色區及(C)白色星狀結晶所得之EDS圖譜 圖2-7 不同溫度下,LaBO3的結晶數目隨熱處理時間的變化 圖2-8 LBCGA添加5wt%的Al2O3於725℃燒結20分鐘後的微結構 圖2-9 不同溫度下,LaBO3結晶量隨熱處理時間的變化 圖2-10 於710-740℃間,LaBO3結晶之ln[-ln(1-x)]對ln t作圖 圖2-11 LaBO3結晶之ln k對1/T作圖 圖2-12 以典型的DTA曲線求取LaBO3結晶體積分率之圖解 圖2-13 不同溫度下,LaBO3 結晶之ln[-ln(1-x)]對 ln 作圖 圖2-14 由DTA曲線取得之 對 作圖 圖2-15 由SEM照片所測得之LaBO3結晶的晶臂長隨時間的變化 圖2-16 簡化成長速率隨過冷度的變化 圖2-17 以升溫速率5℃/min升溫至不同溫度下持溫30min所得之相對緻密度 圖2-18 介電常數及LaBO3與LaAl2.03(B4O10)O0.54結晶強度總和隨溫度變化的情形 圖2-19 介電損失及LaBO3與LaAl2.03(B4O10)O0.54結晶強度總和隨溫度變化的情形 圖3-1 (A) α-Al2O3/LBCGA/α-Al2O3三明治結構與(B) α-Al2O3/ LBCGA多層結構於750℃燒結30分鐘後的顯微結構 圖3-2 LBCGA於不同溫度下自由及束縛燒結時的相對燒結密度隨時間變化的關係 圖3-3 LBCGA於不同溫度下自由及束縛燒結時的緻密速率隨時間變化的關係 圖3-4 LBCGA之(A)自由燒結與(B)束縛燒結試片於710℃燒結60分鐘後所得的顯微結構 圖3-5 不同溫度下LaBO3結晶度隨時間變化的關係 圖3-6 單軸向壓力對LBCGA束縛燒結試片緻密度的影響 圖3-7 單軸向壓力對LBCGA束縛燒結試片緻密速率的影響 圖3-8 使LBCGA於束縛燒結時仍保有與自由燒結時相同的緻密速率所需施加的外加應力隨密度變化的關係 圖3-9 不施加應力時之應變率( )及施加50 mN壓應力之應變率( )隨緻密度變化的關係 圖3-10 LBCGA於(A)自由燒結及(B)束縛燒結時的單軸向黏度值隨緻密度變化的關係 圖3-11 於LBSGA束縛燒結試片之z軸向施加不同荷重時應變率( )隨緻密度變化的關係 圖3-12 LBSGA束縛燒結試片之z軸向應變率( )與外加壓應力( )間的關係 圖3-13 LBCGA自由燒結試片於不同升溫速率下,燒結緻密度隨溫度變化的情形 圖3-14 LBCGA束縛燒結試片於不同升溫速率下,燒結緻密度隨溫度變化的情形 圖3-15 LBCGA自由燒結試片於不同升溫速率下, 對 作圖 圖3-16 LBCGA束縛燒結試片於不同升溫速率下, 對 作圖 圖3-17 平面張應力隨緻密度變化的關係 圖3-18 束縛和自由燒結時的單軸向黏度值比 與平面張應力間的關係 圖3-19 理論計算使LBCGA於束縛燒結時仍保有與自由燒結時相同的緻密速率所需施加的外加應力值 圖4-1 LBCGA自由燒結試片之x及z方向上的燒結收縮曲線 圖4-2 LBCGA層厚度為(A) 220 μm與(B) 110 μm之LBCGA/Al2O3自我束縛燒結試片於x及z方向上的收縮曲線 圖4-3 LBCGA自由燒結試片及LBCGA/Al2O3自我束縛燒結試片之x及z方向的最終收縮率隨升溫速率的變化 圖4-4 LBCGA/Al2O3自我束縛燒結試片於800℃燒結30分鐘後的微觀結構,LBCGA層的厚度為(A) 220 μm與(B) 110 μm 圖4-5 LBCGA/Al2O3多層結構以5℃/min升溫至(A) 725℃,(B)750℃,(C) 775℃與(D) 800℃時LBCGA與Al2O3介面處之顯微結構 圖4-6 LBCGA與Al2O3介面處之(A)二次電子影像及(B) Al,(C) Ca與(D) La元素的分佈 圖4-7 LBCGA/Al2O3自我束縛燒結試片於775℃等溫燒結(A) 5 min,(B) 10 min,(C) 20 min及(D) 40 min時LBCGA與Al2O3介面處的微觀結構 圖4-8 不同溫度下,玻璃的滲透厚度隨持溫時間變化的關係 圖4-9 不同溫度下,玻璃滲透厚度的平方隨持溫時間變化的關係 圖4-10 ln k對1/T作圖 圖4-11 LBCGA/Al2O3自我束縛燒結試片以10℃/min升溫至(A) 750℃及(B) 800℃持溫60min後,LBCGA層的微觀結構 圖5-1 BZA於不同升溫速率下的DTA分析結果 圖5-2 BZA以5℃/min升溫至870-910℃的XRD結果 圖5-3 BaAl2Si2O8結晶溫度與玻璃轉化溫度間的差值隨升溫速率變化的情形 圖5-4 BZA於不同升溫速率下,燒結緻密度隨溫度變化的情形 圖5-5 BZA以(A) 2及(B) 10℃/min的速率將BZA升溫至850℃燒結60分鐘後的微觀結構 圖5-6 BZA/α-Al2O3多層結構於850℃燒結60分鐘後的顯微結構 圖5-7 BZA於不同溫度下自由及束縛燒結時的相對燒結密度隨時間變化的關係 圖5-8 BZA於不同溫度下自由及束縛燒結時的緻密速率隨時間變化的關係 圖5-9 BZA之(A)自由燒結與(B)束縛燒結試片於850℃燒結120分鐘後所得的顯微結構 圖5-10 單軸向壓力對BZA束縛燒結試片緻密度的影響 圖5-11 單軸向壓力對BZA束縛燒結試片緻密速率的影響 圖5-12 不同荷重所對應之外加應力隨相對燒結密度變化的關係 圖5-13 使BZA於束縛燒結時仍保有與自由燒結時相同的緻密速率所需施加的外加應力隨密度變化的關係 圖5-14 BZA於(A)自由燒結及(B)束縛燒結時的單軸向黏度值隨緻密度變化的關係 圖5-15 BZA束縛燒結試片之z軸向應變率與外加壓應力間的關係 圖5-16 BZA束縛燒結試片於不同升溫速率下,燒結緻密度隨溫度變化的情形 圖5-17 BZA自由燒結試片於不同升溫速率下, 對 作圖 圖5-18 BZA束縛燒結試片於不同升溫速率下, 對 作圖 圖5-19 平面張應力隨緻密度變化的關係 圖5-20 束縛和自由燒結時的單軸向黏度值比 與平面張應力間的關係 圖5-21 理論計算使BZA於束縛燒結時仍保有與自由燒結時相同的緻密速率所需施加的外加應力值 圖6-1 (A) LBCGA及(B) BZA於不同升溫速率下之線性應變量隨溫度變化的關係 圖6-2 (A) LBCGA及(B) BZA於不同升溫速率下之線性應變率隨溫度變化的關係 圖6-3 (A) LBCGA及(B) BZA於不同升溫速率下之結晶量隨溫度變化的關係 圖6-4 LBCGA/BZA厚度比為245μm/35μm之(A)對稱型層壓物線性收縮量隨溫度變化的關係及(B)微觀結構 圖6-5 LBCGA/BZA厚度比為245μm/105μm之(A)對稱型層壓物線性收縮量隨溫度變化的關係及(B)微觀結構 圖6-6 LBCGA/BZA厚度比為245μm/245μm之(A)對稱型層壓物線性收縮量隨溫度變化的關係及(B)微觀結構 圖6-7 LBCGA/BZA厚度比為(A) 245/35,(B)245/105及(C) 245/245 μm/μm之對稱型層壓物邊緣的微觀結構 圖6-8 (A) LBCGA和(B) BZA自由燒結試片及(C) LBCGA/ (D) BZA自我束縛燒結試片以5℃/min的速度升溫至850℃燒結120分鐘後的微觀結構 圖6-9 (A) LBCGA和(B) BZA自由燒結試片及(C) LBCGA/ (D) BZA自我束縛燒結試片以10℃/min的速度升溫至850℃燒結120分鐘後的微觀結構 圖6-10 LBCGA/BZA雙層結構在共燒過程中由同步照相所得之影像(A) 25,(B) 650,(C) 680,(D) 710,(E) 760,(F) 790和(G) 900℃ 圖6-11 LBCGA/BZA雙層結構於共燒時所產生之曲率隨燒結溫度變化的關係 圖6-12 LBCGA/BZA雙層結構於共燒時之曲率變化隨燒結溫度變化的關係 圖6-13 以5℃/min的升溫速率測量LBCGA與BZA束縛燒結試片之應變量對溫度變化的關係 圖6-14 LBCGA與BZA於束縛燒結時之單軸向黏度值隨溫度變化的關係 圖6-15 LBCGA/BZA非對稱結構於共燒時所產生之不匹配應力與溫度的關係 圖6-16 LBCGA/BZA對稱結構於共燒時所產生之不匹配應力與溫度的關係 圖6-17 LBCGA/BZA對稱結構於共燒時所產生之不匹配應力與LBCGA及BZA燒結驅動力間的比較 圖6-18 LBCGA/BZA對稱結構以5℃/min的速率升溫至850℃燒結120分鐘後LBCGA/BZA介面處的微觀結構 表1-1 常見基材之熱膨脹係數、介電常數及燒結溫度等基本性質 表2-1 在孕核速率為零的條件下,Avrami指數 的理論值 表2-2 LaBO3結晶在不同溫度下之Avrami指數 及結晶速率常數 的時實驗結果-等溫熱處理法 表2-3 LaBO3結晶在不同溫度下之Avrami指數 -非等溫熱處理法 表4-1 各溫度下不同厚度之Al2O3生胚滲透所需的時間

    [1] H. Stetson, “Multilayer Ceramic Technology,” Ceramics and Civilization, 3, 307-22 (1987).
    [2] W. J. Gyuvk, “Methods of Manufacturing Multilayered Monolithic Ceramic Bodies,” U.S. Pat. No. 3192086 (1965).
    [3] H. Stetson, “Methods of Making Multilayer Circuits,” U.S. Pat. No.3189978 (1965).
    [4] B. Schwartz, “Microelectronics Packaging: 11,” Am. Ceram. Soc. Bull., 63[4], 577-81 (1984).
    [5] A. J. Blodgett, and D. R. Barbour, “Thermal conduction module: A high performance multilayer ceramic package,” IBM J. Res. Develop., 26[3], 30 (1982).
    [6] C. W. Ho, D.A. Chance, C. H. Bajorek, and R. E. Acosta, “The Thin-Film Module and High Performance Semiconductor Package,” IBM J. Res. Develop., 26[3], 286-96 ( 1982).
    [7] T. K. Gupta, “In Search of low Dielectric Constant Ceramic Materials for Electronic Packages,” Int. J. Microcircuits Electronic Packaging., 17[1], 80-97 (1994).
    [8] H. Sinohara, N. Ushifusa, K. Nagayama, and S. Ogihara, “Multilayer Ceramic Circuit Board,” U.S. Pat. No. 4672152 (1987).
    [9] K. Niwa, N. Kamehara, K. Yokouchi, and Y. Imanaka, “Multilayer Ceramic Circuit Board with a Copper Conductor,” Advanced Ceramic Materials, 2[4], 832-35 (1987).
    [10] R. R. Tummala, “Ceramic and Glass-Ceramic Packaging in the 1990s,” J. Am. Ceram. Soc., 74[5], 895-908 (1991).
    [11] K. Niwa, E. Horikoshi, and Y. Imanaka, “Recent Progress in Multilayer Ceramic Substrates”; pp. 171-82 in Ceramic Transactions , Edited by J. H. Jean, T. K. Gupta, K. M. Nair, and K. Niwa., Vol. 97, Am. Ceram. Soc., Columbus, OH (1999).
    [12] J. U. Knickerbocker and S. H. Knickerbocker, in Handbook of Advanced Materials, edited by J. K. Wessel, Hopewell Junction, 2004, Chap. 4.
    [13] Y. Shimada, K. Utsumi, M. Suzuki, and H. Takamizowa, “Low Firing Temperature Multilayer Glass-Ceramic Substrate,” IEEE Trans. Compon. Hybrids Manuf. Tech., 6[4], 382-88 (1983).
    [14] N. Kamehara, K. Kurihara and K. Niwa, “Method for Producing Multilayered Glass-Ceramic Structure with Copper-Based Conductors Therein,” U.S. Pat. No. 4504339, March 12 (1985).
    [15] S. Nishigaki, S. Yano, J. Fukuda, M. Fukaya and T. Fuwa, “A New Multilayered, Low-Temperature Firable Ceramic Substrate,” ISHM Proceedings, 225-34 (1985).
    [16] J. I. Steinberg, S. J. Horowitz, and R. J. Bacher; “Low Temperature Co-fired Tape Dielectric Material Systems for Multilayer Interconnections”; pp. 31-39 in Advances in Ceramics, Edited by J. B. Blum and W.R. Cannon, Vol. 19, Am. Ceram. Soc., Westerville, OH (1986).
    [17] D. M. Mattox, S. R. Gurkovich, J. A. Olenick and K. M. Mason, “Low Dielectric Constant Alumina-Compatible, Co-Fired Multilayer Substrate,” Ceram. Eng. Sci. Proc., 9[11-12], 1567-78 (1988).
    [18] A. H. Kumar, P. W. McMillan, and R. R. Tummala, “Glass-Ceramic Structures and Sintered Multilayered Substrates Thereof with Circuit Patterns of Gold, Silver, or Copper,” U.S. Pat. No. 4301324 (1981).
    [19] S. H. Knickerbocker, A. H. Kumar and L. W. Herron, “Cordierite Glass-Ceramics for Ceramic Packaging,” Am. Ceram. Soc. Bull., 72[1], 90-95 (1993).
    [20] S. K. Muralidhar, G. J. Roberts, A. S. Shaikh, D. J. Leandri, D. L. Hankey, L. Dana and T. J. Vlach, “Low Dielectric, Low Temperature Fired Glass Ceramics,” U.S. Pat. No. 5258335 (1993).
    [21] K. B. Shim, N. T. Cho and S. W. Lee, “Silver Diffusion and Microstructure in LTCC Multilayer Couplers for high Frequency Applications,” J. Mat. Sci., 35, 813-20 (2000).
    [22] A. H. Kumar and R. R. Tummala, “State-of-the Art. Glass-Ceramic/Copper, Multilayer Substrate for High Performance Computers,” Int. J. Hybrid Microelectron., 14, 137-50 (1991).
    [23] R. K. Bordia and R. Raj, “Sintering Behavior of Ceramic Films Constrained by a Rigid Substrate,” J. Am. Ceram. Soc., 68[6], 287-92 (1985).
    [24] C. H. Hsueh and A. G. Evans, “Residual Stress and Cracking in Metal/Ceramic Systems for Microelectronic Packaging,” J. Am. Ceram. Soc., 68[3], 120-27 (1985).
    [25] T. Cheng and R. Raj, “Flaw Generation During Constrained Sintering of Metal-Ceramic and Metal-Glass Multilayer Films,” J. Am. Ceram. Soc., 72[9], 1649-55 (1989).
    [26] C. Hillman, Z. Suo, and F. F. Lange, “Cracking of Laminates Subjected to Biaxial Tensile Stresses,” J. Am. Ceram. Soc., 79[8], 2127-33 (1996).
    [27] R. K. Bordia and A. Jagota, “Crack Growth and Damage in Constrained Sintering Films,” J. Am. Ceram. Soc., 76[10], 2475-85 (1993).
    [28] S. Ho, C. Hillman, F. F. Lange, and Z. Suo, “Surface Cracking in Layers under Biaxial, Residual Compressive Stress,” J. Am. Ceram. Soc., 78[9], 2353-59 (1995).
    [29] A. G. Evans and J. W. Hutchinson, “The Thermomechanical Integrity of Thin Film and Multilayers,” Acta. Metall. Mater., 43[7], 2507-30 (1995).
    [30] C. C. Chiu, “Residual Stresses in Ceramic Coatings as Determined from the Curvature of a Coated Strip,” Mater. Sci. Eng., A, 150, 139-48 (1992).
    [31] S. Timoshenko, “Analysis of Bimetal Thermostats,” J. Opt. Soc. Am., 11, 233-55 (1925).
    [32] S. Suresh, A. E. Giannakopoulos, and M. Olsson, “Elastoplastic Analysis of Thermal Cycling: Layered Materials with Sharp Interfaces,” J. Mech. Phys. Solids, 42[6], 979-1018 (1994).
    [33] G. W. Scherer, “Viscoelastic Analysis of the Split Ring Seal,” J. Am. Ceram. Soc., 66[2], 135-39 (1983).
    [34] P. Z. Cai, D. L. Green and G. L. Messing, “Constrained Densification of Alumina/Zirconia Hybrid Laminates,Ⅰ: Experimental Observations of Processing Defects,” J. Am. Ceram. Soc., 80[8], 1929-39 (1997).
    [35] R. K. Bordia and G. W. Scherer, “On Constrained Sintering – I, Constitutive Model for a Sintering Body,” Acta. Metall., 36[9], 2393-97 (1988).
    [36] R. K. Bordia and G. W. Scherer, “On Constrained Sintering – II, Comparison of Constitutive Models,” Acta. Metall., 36[9], 2399-409 (1988).
    [37] R. K. Bordia and G. W. Scherer, “On Constrained Sintering – I, Rigid Inclusions,” Acta. Metall., 36[9], 2411-16 (1988).
    [38] P. Z. Cai, G. L. Messing and D. L. Green, “Determination of the Mechanical Response of Sintering Compacts by Cyclic Loading Dilatometry,” J. Am. Ceram. Soc., 80[2], 445-52 (1997).
    [39] C. C. Huang and J. H. Jean, “Stress required for constrained sintering of a ceramic-filled glass composite,” J. Am. Ceram. Soc., 87[8], 1454-58 (2004).
    [40] C. D. Lei and J. H. Jean, “Effect of crystallization on the stress required for constrained sintering of CaO-B2O3-SiO2 glass-ceramics,” J. Am. Ceram. Soc., 88[3], 599-603 (2005).
    [41] Y. C. Lin and J. H. Jean, “Constrained Densification Kinetics of Alumina/ Borosilicate Glass+Alumina/ Alumina Sandwich Structure,” J. Am. Ceram. Soc., 85[1], 150-54 (2002).
    [42] J. Bang and G. Q. Lu, “Constrained-Film Sintering of a Borosilicate Glass: In-situ Measurement of Film Stress,” J. Am. Ceram. Soc., 78[3, 813-15 (1995).
    [43] G. W. Scherer and T. Garino, “Viscous Sintering on a Rigid Substrate,” J. Am. Ceram. Soc., 68[4], 216-20 (1985).
    [44] W.A. Vitrio and R.L. Brown, “Process for Fabricating Dimensionally Stable Interconnect Boards,” U.S. Pat. No. 4656552 (1987).
    [45] S. Y. Tzeng and J. H. Jean, “Stress development during Constrained Sinetring of Alumina/Glass/Alumina Sandwich Structure,” J. Am. Ceram. Soc., 85[2], 335-40 (2002).
    [46] K. R. Mikeska and D. T. Schaefer, “Method for Reducing Shrinkage during Firing of Ceramic Bodies,” U.S. Pat. 5454741 (1994).
    [47] B. Geller, B. Thaler, A. Fathy, M. J. Liberatore, H. D. Chen, G. Ayers, V. Pendrick and Y. Narayan, “LTCC-M: An Enabling Technology for High Performance Multilayer RF Systems,” J. Microwave, 7, 64-72 (1999).
    [48] T. J. Garino and H. K. Bowen, “Deposition and Sintering of Particle Films on a Rigid Substrate,” J. Am. Ceram. Soc., 70[11], C315-17 (1987).
    [49] T. J. Garino and H. K. Bowen, “Kinetics of Constrained-Film Sintering,” J. Am. Ceram. Soc., 73[2], 251-57 (1990).
    [50] Y.C. Lin and J.H. Jean, “Constrained Sintering of Silver Circuit Paste,” J. Am. Ceram. Soc., 87[2], 187-91 (2004).
    [51] M. Ohring, The Materials Science of Thin Films, Academic Press, San Diego, CA, 1992, chap. 9.
    [52] J. H. Jean, J. C. Chang and Y. Y. Hung, unpublished results.
    [53] W. A. Vitrio and R. L. Brown, “Process for Fabricating Dimensionally Stable Interconnect Boards,” U.S. Pat. No. 4656552 (1987).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE