研究生: |
法比奧 Fabio Bohns |
---|---|
論文名稱: |
生物病變礦化組織之多尺度結構與機械性質研究 MULTI-SCALE STRUCTURAL AND MECHANICAL INVESTIGATIONS ON DISEASED MINERALISED TISSUES |
指導教授: |
Riaz, Akhtar
Riaz, Akhtar 陳柏宇 Chen, Po-Yu |
口試委員: |
Wang, Yinang
Wang, Yinang Wilkinson, David Wilkinson, David Chen, Yuhang Chen, Yuhang Chang, Shu-Wei Chang, Shu-Wei Wang, Tzu-Wei Wang, Tzu-Wei |
學位類別: |
博士 Doctor |
系所名稱: |
教務處 - 跨院國際博士班學位學程 International Intercollegiate PhD Program |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 217 |
中文關鍵詞: | 骨骼結構 、生物力學 、骨骼疾病 |
外文關鍵詞: | Bone Structure, Biomechanics, Bone Disease |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
骨骼是一種多功能的物質,可保護我們的器官、維持體重及製造骨骼細胞。骨質疏鬆症和成骨不全症分別是慢性和遺傳性骨骼疾病,它們都有骨頭脆弱的表徵。這是一個重要的討論議題,因為它會造成所有年齡層的經濟負擔,尤其是老年人。為了將骨頭疾病的負面後果減至最低,應遵循一系列的醫療建議;這些建議包括攝取抗骨吸收藥物(如阿崙膦酸鈉),並維持積極健康的生活作息。儘管對骨質疏鬆症和成骨不全症的認識有所進步,但仍有一些潛在一些基本機制及其與骨骼形態測量(如礦物密度和骨量)的關係仍是未解之迷。為了進一步了解骨骼疾病,動物模型已被提出。
斑馬魚是一種小型的脊椎魚,其骨骼與人類的骨骼有高度的相似性。這些魚能夠再生他們身體的一部分,例如尾鰭,有助於動物研究中的 3Rs (Reduction, Replacement and Refinement)。例如減少研究中嚙齒動物的數量。正因如此,斑馬魚已被用於臨床骨質狀況(如糖皮質激素誘發的骨質疏鬆症)的惡化。小鼠成骨不全症是一種自發突變的輕度至嚴重的成骨不全症。
這些小鼠表現出骨骼畸形和骨頭變脆,已被用來評估骨膠原缺陷對骨特性的影響。在本研究中,我們使用斑馬魚和小鼠模型進行了一系列的結構和機械分析,以建立骨骼疾病所造成的不良機械特性與用於測量骨質的參數之間的關係。我們利用斑馬魚再生截肢尾鰭的潛力來探討骨質疏鬆症和阿崙膦酸鈉對鰭骨稜線礦化的影響。患病的魚骨形成速度比對照組緩慢;使用阿崙膦酸鈉治療的魚骨形成速度則比兩組都快。同樣地,骨質疏鬆的魚體內的彈性模數和硬度也降低了。分別為 (5.60 ± 5.04 GPa 及 0.12 ± 0.17 GPa,),而阿崙膦酸鈉則可使其恢復至截骨前的狀態分別為(8.68 ± 8.74 GPa 及 0.34 ± 0.47 GPa)。潑尼松龍和阿崙膦酸鈉的作用對斑馬魚脊椎骨的影響因骨礦物密度的降低和硬度恢復至控制水平。在成骨不全症模型中,α2 鏈的錯誤折疊(同基因)會產生生物力學性能降低的骨骼年齡。
斑馬魚顯示,骨質疏鬆症會因礦物質形成受阻(鰭骨條)、硬度降低(鰭骨條和脊椎骨)和骨礦密度降低 (脊椎骨)。在小鼠模型中,生物力學特性會隨著年齡的增長而增加,這證明了低彈性模量和硬度以及年輕時的高蠕變率可能在在成骨不全症表型中扮演關鍵角色。本論文中應用的技術有可能在未來應用在人類身上,以更好地了解骨質疏鬆症和成骨不全症。
Bone is a multi-functional material that protect our organs, sustain our body weight and produce skeletal cells. Osteoporosis and osteogenesis imperfecta are chronic and genetic bone diseases, respectively, that share a phenotype of bone fragility. Bone fracture is an important subject for discussion due to the economic burden that it causes across all ages, but especially in the elderly. In order to minimise the negative consequences of bone diseases, a series of medical recommendations should be followed; they involve the intake of anti-resorptive drugs (i.e., alendronate) and maintaining an active and healthy routine. Despite the advances in the understanding of osteoporosis and osteogenesis imperfecta, some underlying mechanisms of bone fragility and its relationship with bone morphometrics (e.g., mineral density and bone volume), remain unanswered. To further the knowledge on bone diseases, animal models have been proposed.
Zebrafish are small teleost fish that the bones have shown high conservation with those of human. These fish are able to regenerate parts of their body, like caudal fin, contributing to the 3Rs (Reduction, Replacement and Refinement) in animal research by, for example, reducing the number of rodents in research. Because of this, zebrafish have been used for the exacerbation of clinical bone conditions such as glucocorticoid-induced osteoporosis. Osteogenesis imperfecta murine is a spontaneous mutation of mild-to-severe cases of osteogenesis imperfecta. These mice show deformed skeleton and brittle bones. These mice have been used to evaluate effects of collagen defects in bone properties. In this study, a series of structural and mechanical analysis were used in zebrafish and murine models to establish a relationship between poor mechanical properties caused by bone diseases and parameters used to measure bone quality.
The potential of zebrafish to regenerate their amputated caudal fins was used to explore the effects of osteoporosis and alendronate on the mineralisation of the fin bony rays. Diseased fish displayed a slower bone formation than controls; fish treated with alendronate showed increased bone formation than both groups. Similarly, the reduced elastic modulus and hardness levels were decreased in osteoporotic bones (5.60 ± 5.04 GPa and 0.12 ± 0.17 GPa, respectively), whereas alendronate recovered them to the pre-amputation condition (8.68 ± 8.74 GPa and 0.34 ± 0.47 GPa, respectively). Prednisolone and alendronate effects on zebrafish vertebrae were exacerbated by the reduction of the bone-mineral density and recuperation of hardness to controls levels. In the osteogenesis imperfecta model, the misfolding of α2 chains (homozygous) produced bones with decreased biomechanics at early age.
Zebrafish showed that osteoporosis is exacerbated by hampered mineral formation (fin bony rays), reduced hardness (fin bony rays and vertebrae) and reduction of bone-mineral density (vertebrae). In murine models, the biomechanical properties increased with age, demonstrating that low elastic modulus and hardness, and high creep rates at young ages may play key role in osteogenesis imperfecta phenotype. The techniques applied in this thesis have potential, in the future, to be applied in humans to better understand osteoporosis and osteogenesis imperfecta.
Chapter 1
Bailone, R.L., Fukushima, H.C.S., Ventura Fernandes, B.H., De Aguiar, L.K., Corrêa, T., Janke, H., Grejo Setti, P., Roça, R.D.O., Borra, R.C., 2020. Zebrafish as an alternative animal model in human and animal vaccination research. Lab Anim Res 36, 13.
Barrett, R., Chappell, C., Quick, M., Fleming, A., 2006. A rapid, high content, in vivo model of glucocorticoid-induced osteoporosis. Biotechnology Journal. 1, 651–655.
Bergh, C., Wennergren, D., Möller, M., Brisby, H., 2020. Fracture incidence in adults in relation to age and gender: A study of 27,169 fractures in the Swedish Fracture Register in a well-defined catchment area. PLoS ONE. 15, e0244291.
Chen, P.-Y., McKittrick, J., 2011. Compressive mechanical properties of demineralized and deproteinized cancellous bone. Journal of the Mechanical Behavior of Biomedical Materials. 4, 961–973.
Clynes, M.A., Harvey, N.C., Curtis, E.M., Fuggle, N.R., Dennison, E.M., Cooper, C., 2020. The epidemiology of osteoporosis. British Medical Bulletin. 133(1), 105-117.
El-Gazzar, A., Högler, W., 2021. Mechanisms of Bone Fragility: From Osteogenesis Imperfecta to Secondary Osteoporosis. International Journal of Molecular Sciences. 22, 625.
Embry, M.R., Belanger, S.E., Braunbeck, T.A., Galay-Burgos, M., Halder, M., Hinton, D.E., Léonard, M.A., Lillicrap, A., Norberg-King, T., Whale, G., 2010. The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquatic Toxicology. 97, 79–87.
Forlino, A., Marini, J.C., 2016. Osteogenesis imperfecta. The Lancet. 387, 1657–1671.
Gremminger, V.L., Harrelson, E.N., Crawford, T.K., Ohler, A., Schulz, L.C., Rector, R.S., Phillips, C.L., 2021. Skeletal muscle specific mitochondrial dysfunction and altered energy metabolism in a murine model (oim/oim) of severe osteogenesis imperfecta. Molecular Genetics and Metabolism. 132, 244–253.
Hernlund, E., Svedbom, A., Ivergård, M., Compston, J., Cooper, C., Stenmark, J., McCloskey, E.V., Jönsson, B., Kanis, J.A., 2013. Osteoporosis in the European Union: medical management, epidemiology and economic burden: A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Archives Osteoporosis. 8, 136.
Lee K. J., Lisa Rambault, George Bou-Gharios, Peter D. Clegg, Riaz Akhtar, Gabriela Czanner, Rob van‘t Hof, Elizabeth G. Canty-Laird; 2022 Collagen (I) homotrimer potentiates the osteogenesis imperfecta (oim) mutant allele and reduces survival in male mice. Dis Model Mech 1 September; 15 (9): dmm049428.
Salari, N., Ghasemi, H., Mohammadi, L., Behzadi, M. Hasan, Rabieenia, E., Shohaimi, S., Mohammadi, M., 2021. The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. Journal of Orthopaedic Surgery Research. 16, 609.
Santos, J.M.A., Laizé, V., Gavaia, P.J., Conceição, N., Cancela, M.L., 2023. Zebrafish Models to Study Ectopic Calcification and Calcium-Associated Pathologies. International Journal of Molecular Sciences. 24, 3366.
United Nations, 2017. World population ageing: 2017 highlights. United Nations, New York. 1-40.
Wu, A.-M., Bisignano, C., James, S.L., Abady, G.G., Abedi, A., Abu-Gharbieh, E., Alhassan, R.K., Alipour, V., Arabloo, J., Asaad, M., Asmare, W.N., Awedew, A.F., Banach, M., Banerjee, S.K., Bijani, A., Birhanu, T.T.M., Bolla, S.R., Cámera, L.A., Chang, J.-C., Cho, D.Y., Chung, M.T., Couto, R.A.S., Dai, X., Dandona, L., Dandona, R., Farzadfar, F., Filip, I., Fischer, F., Fomenkov, A.A., Gill, T.K., Gupta, B., Haagsma, J.A., Haj-Mirzaian, A., Hamidi, S., Hay, S.I., Ilic, I.M., Ilic, M.D., Ivers, R.Q., Jürisson, M., Kalhor, R., Kanchan, T., Kavetskyy, T., Khalilov, R., Khan, E.A., Khan, M., Kneib, C.J., Krishnamoorthy, V., Kumar, G.A., Kumar, N., Lalloo, R., Lasrado, S., Lim, S.S., Liu, Z., Manafi, A., Manafi, N., Menezes, R.G., Meretoja, T.J., Miazgowski, B., Miller, T.R., Mohammad, Y., Mohammadian-Hafshejani, A., Mokdad, A.H., Murray, C.J.L., Naderi, M., Naimzada, M.D., Nayak, V.C., Nguyen, C.T., Nikbakhsh, R., Olagunju, A.T., Otstavnov, N., Otstavnov, S.S., Padubidri, J.R., Pereira, J., Pham, H.Q., Pinheiro, M., Polinder, S., Pourchamani, H., Rabiee, N., Radfar, A., Rahman, M.H.U., Rawaf, D.L., Rawaf, S., Saeb, M.R., Samy, A.M., Sanchez Riera, L., Schwebel, D.C., Shahabi, S., Shaikh, M.A., Soheili, A., Tabarés-Seisdedos, R., Tovani-Palone, M.R., Tran, B.X., Travillian, R.S., Valdez, P.R., Vasankari, T.J., Velazquez, D.Z., Venketasubramanian, N., Vu, G.T., Zhang, Z.-J., Vos, T., 2021. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. The Lancet Healthy Longevity. 2, e580–e592.
Xu, Q., Ou, X., Li, J., 2022. The risk of falls among the aging population: A systematic review and meta-analysis. Frontiers of Public Health. 10, 902599.
Chapter 2
Ackermann, M., Chao, L., Bergstrom, C.T., Doebeli, M., 2007. On the evolutionary origin of aging. Aging Cell 6, 235–244.
Adami, G., Saag, K.G., 2019. Glucocorticoid-induced osteoporosis update. Current Opinion in Rheumatology 31, 388–393.
Alcorta-Sevillano, N., Infante, A., Macías, I., Rodríguez, C.I., 2022. Murine Animal Models in Osteogenesis Imperfecta: The Quest for Improving the Quality of Life. IJMS 24, 184.
Andersen, T.L., Abdelgawad, M.E., Kristensen, H.B., Hauge, E.M., Rolighed, L., Bollerslev, J., Kjærsgaard-Andersen, P., Delaisse, J.-M., 2013. Understanding Coupling between Bone Resorption and Formation. The American Journal of Pathology 183, 235–246.
Ashournia, H., Johansen, F.T., Folkestad, L., Diederichsen, A.C.P., Brixen, K., 2015. Heart disease in patients with osteogenesis imperfecta — A systematic review. International Journal of Cardiology 196, 149–157.
Astrom, E., 2002. Beneficial effect of long-term intravenous bisphosphonate treatment of osteogenesis imperfecta. Archives of Disease in Childhood 86, 356–364.
Azevedo, A.S., Grotek, B., Jacinto, A., Weidinger, G., Saúde, L., 2011. The Regenerative Capacity of the Zebrafish Caudal Fin Is Not Affected by Repeated Amputations. PLoS ONE 6, e22820.
Bailone, R.L., Fukushima, H.C.S., Ventura Fernandes, B.H., De Aguiar, L.K., Corrêa, T., Janke, H., Grejo Setti, P., Roça, R.D.O., Borra, R.C., 2020. Zebrafish as an alternative animal model in human and animal vaccination research. Lab Anim Res 36, 13.
Barrett, R., Chappell, C., Quick, M., Fleming, A., 2006. A rapid, high content, in vivo model of glucocorticoid-induced osteoporosis. Biotechnology Journal 1, 651–655.
Becker, D.E., 2013. Basic and Clinical Pharmacology of Glucocorticosteroids. Anesthesia Progress 60, 25–32.
Bembey, A.K., Oyen, M.L., Bushby, A.J., Boyde, A., 2006. Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philosophical Magazine 86, 5691–5703.
Bensimon-Brito, A., Cardeira, J., Dionísio, G., Huysseune, A., Cancela, M.L., Witten, P.E., 2016a. Revisiting in vivo staining with alizarin red S - a valuable approach to analyse zebrafish skeletal mineralisation during development and regeneration. BMC Dev Biol 16, 2.
Bergen, D.J.M., Kague, E., Hammond, C.L., 2019. Zebrafish as an Emerging Model for Osteoporosis: A Primary Testing Platform for Screening New Osteo-Active Compounds. Frontiers in Endocrinology 10.
Bird, N.C., Mabee, P.M., 2003. Developmental morphology of the axial skeleton of the zebrafish, Danio rerio (Ostariophysi: Cyprinidae). Developmental Dynamics 228, 337–357.
Bonicelli, A., Kranioti, E.F., Xhemali, B., Arnold, E., Zioupos, P., 2022. Assessing bone maturity: Compositional and mechanical properties of rib cortical bone at different ages. Bone 155, 116265.
Bowman, S.M., Keaveny, T.M., Gibson, L.J., Hayes, W.C., McMahon, T.A., 1994. Compressive creep behavior of bovine trabecular bone. Journal of Biomechanics 27, 301–310.
Breeland, G., Sinkler, M.A., Menezes, R.G., 2021. Embryology, Bone Ossification, in: StatPearls. StatPearls Publishing, Treasure Island (FL).
Brull, D.J., Murray, L.J., Boreham, C.A., Ralston, S.H., Montgomery, H.E., Gallagher, A.M., McGuigan, F.E.A., Davey Smith, G., Savage, M., Humphries, S.E., Young, I.S., 2001. Effect of a COL1A1 Sp1 Binding Site Polymorphism on Arterial Pulse Wave Velocity: An Index of Compliance. Hypertension 38, 444–448.
Buck, D.W., Dumanian, G.A., 2012. Bone Biology and Physiology: Part I. The Fundamentals. Plastic and Reconstructive Surgery 129, 1314–1320.
Burley, M., Campbell, J.E., Dean, J., Clyne, T.W., 2020. A methodology for obtaining primary and secondary creep characteristics from indentation experiments, using a recess. International Journal of Mechanical Sciences 176, 105577.
Bushby, A.J., Ferguson, V.L., Boyde, A., 2004. Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmethacrylate. Journal of Materials Research 19, 249–259.
Busse, B., Galloway, J.L., Gray, R.S., Harris, M.P., Kwon, R.Y., 2020. Zebrafish: An Emerging Model for Orthopedic Research. J. Orthop. Res. 38, 925–936.
Cardeira, J., Gavaia, P.J., Fernández, I., Cengiz, I.F., Moreira-Silva, J., Oliveira, J.M., Reis, R.L., Cancela, M.L., Laizé, V., 2016. Quantitative assessment of the regenerative and mineralogenic performances of the zebrafish caudal fin. Scientific Reports 6.
Carretero, A., Ruberte, J., Navarro, M., Nacher, V., Mendes-Jorge, L., 2017. Osteology, in: Morphological Mouse Phenotyping. Elsevier, pp. 7–53.
Carnovali, M., Ottria, R., Pasqualetti, S., Banfi, G., Ciuffreda, P., Mariotti, M., 2016. Effects of bioactive fatty acid amide derivatives in zebrafish scale model of bone metabolism and disease. Pharmacological Research 104, 1–8.
Carriero, A., Enderli, T., Burtch, S., Templet, J., 2016. Animal models of osteogenesis imperfecta: applications in clinical research. ORR Volume 8, 41–55.
Carson, M.A., Nelson, J., Cancela, M.L., Laizé, V., Gavaia, P.J., Rae, M., Heesch, S., Verzin, E., Gilmore, B.F., Clarke, S.A., 2018. Screening for osteogenic activity in extracts from Irish marine organisms: The potential of Ceramium pallidum. PLOS ONE 13, e0207303.
Chandra, A., Rajawat, J., 2021. Skeletal Aging and Osteoporosis: Mechanisms and Therapeutics. IJMS 22, 3553.
Chang, A.Y., Skirbekk, V.F., Tyrovolas, S., Kassebaum, N.J., Dieleman, J.L., 2019. Measuring population ageing: an analysis of the Global Burden of Disease Study 2017. The Lancet Public Health 4, e159–e167.
Chang, Z., Chen, P.-Y., Chuang, Y.-J., Akhtar, R., 2018. Zebrafish as a model to study bone maturation: Nanoscale structural and mechanical characterization of age-related changes in the zebrafish vertebral column. Journal of the Mechanical Behavior of Biomedical Materials 84, 54–63.
Charles, J.F., Sury, M., Tsang, K., Urso, K., Henke, K., Huang, Y., Russell, R., Duryea, J., Harris, M.P., 2017. Utility of quantitative micro-computed tomographic analysis in zebrafish to define gene function during skeletogenesis. Bone 101, 162–171.
Chavassieux, P., Chapurlat, R., Portero‐Muzy, N., Roux, J., Garcia, P., Brown, J.P., Libanati, C., Boyce, R.W., Wang, A., Grauer, A., 2019. Bone‐Forming and Antiresorptive Effects of Romosozumab in Postmenopausal Women with Osteoporosis: Bone Histomorphometry and Microcomputed Tomography Analysis After 2 and 12 Months of Treatment. Journal of Bone and Mineral Research 34, 1597–1608.
Chen, J.-R., Lai, Y.-H., Tsai, J.-J., Hsiao, C.-D., 2017. Live Fluorescent Staining Platform for Drug-Screening and Mechanism-Analysis in Zebrafish for Bone Mineralisation. Molecules 22, 2068.
Chen, P.-Y., McKittrick, J., 2011. Compressive mechanical properties of demineralized and deproteinized cancellous bone. Journal of the Mechanical Behavior of Biomedical Materials 4, 961–973.
Cheng, T.-T., Lai, H.-M., Yu, S.-F., Chiu, W.-C., Hsu, C.-Y., Chen, J.-F., Chen, Y.-C., 2018. The impact of low-dose glucocorticoids on disease activity, bone mineral density, fragility fractures, and 10-year probability of fractures in patients with rheumatoid arthritis. Journal of Investigative Medicine 66, 1004–1007.
Cheung, C.-L., Ang, S.B., Chadha, M., Chow, E.S.-L., Chung, Y.-S., Hew, F.L., Jaisamrarn, U., Ng, H., Takeuchi, Y., Wu, C.-H., Xia, W., Yu, J., Fujiwara, S., 2018. An updated hip fracture projection in Asia: The Asian Federation of Osteoporosis Societies study. Osteoporosis and Sarcopenia 4, 16–21.
Chipman, S.D., Sweet, H.O., McBride, D.J., Davisson, M.T., Marks, S.C., Shuldiner, A.R., Wenstrup, R.J., Rowe, D.W., Shapiro, J.R., 1993. Defective pro alpha 2(I) collagen synthesis in a recessive mutation in mice: a model of human osteogenesis imperfecta. Proc. Natl. Acad. Sci. U.S.A. 90, 1701–1705.
Cho, T.-J., Choi, I.H., Chung, C.Y., Yoo, W.J., Lee, K.S., Lee, D.Y., 2007. Interlocking Telescopic Rod for Patients with Osteogenesis Imperfecta: The Journal of Bone & Joint Surgery 89, 1028–1035.
Clarke, B., 2008. Normal Bone Anatomy and Physiology. Clinical Journal of the American Society of Nephrology 3, S131–S139.
Colloca, G., Di Capua, B., Bellieni, A., Fusco, D., Ciciarello, F., Tagliaferri, L., Valentini, V., Balducci, L., 2020. Biological and Functional Biomarkers of Aging: Definition, Characteristics, and How They Can Impact Everyday Cancer Treatment. Curr Oncol Rep 22, 115.
Compston, J., 2018. Glucocorticoid-induced osteoporosis: an update. Endocrine 61, 7–16.
Consensus development conference: Diagnosis, prophylaxis, and treatment of osteoporosis, 1993. The American Journal of Medicine 94, 646–650.
Cooper, C., Campion, G., Melton, L.J., 1992. Hip fractures in the elderly: A world-wide projection. Osteoporosis Int 2, 285–289.
Cooper, M.S., 2010. Glucocorticoid-induced osteoporosis: how best to avoid fractures. Therapeutic Advances in Chronic Disease 1, 17–23.
Cremers, S., Drake, M.T., Ebetino, F.H., Bilezikian, J.P., Russell, R.G.G., 2019. Pharmacology of bisphosphonates. Br J Clin Pharmacol 85, 1052–1062.
Cutcliffe, H.C., DeFrate, L.E., 2021. Four-Point Bending Testing for Mechanical Assessment of Mouse Bone Structural Properties, in: Hilton, M.J. (Ed.), Skeletal Development and Repair, Methods in Molecular Biology. Springer US, New York, NY, pp. 199–215.
Dall’Ara, E., Cheong, V.S., 2022. Bone biomechanics, in: Human Orthopaedic Biomechanics. Elsevier, pp. 97–120.
de Vrieze, E., van Kessel, M.A.H.J., Peters, H.M., Spanings, F.A.T., Flik, G., Metz, J.R., 2014. Prednisolone induces osteoporosis-like phenotype in regenerating zebrafish scales. Osteoporosis International 25, 567–578.
Deckard, C., Walker, A., Hill, B.J.F., 2017. Using three-point bending to evaluate tibia bone strength in ovariectomized young mice. J Biol Phys 43, 139–148.
Devogelaer, J.-P., Goemaere, S., Boonen, S., Body, J.-J., Kaufman, J.-M., Reginster, J.-Y., Rozenberg, S., Boutsen, Y., 2006. Evidence-based guidelines for the prevention and treatment of glucocorticoid-induced osteoporosis: a consensus document of the Belgian Bone Club. Osteoporos Int 17, 8–19.
Diab, T., Condon, K.W., Burr, D.B., Vashishth, D., 2006. Age-related change in the damage morphology of human cortical bone and its role in bone fragility. Bone 38, 427–431.
Drake, M.T., Clarke, B.L., Khosla, S., 2008. Bisphosphonates: Mechanism of Action and Role in Clinical Practice. Mayo Clinic Proceedings 83, 1032–1045.
Dubińska-Magiera, M., Daczewska, M., Lewicka, A., Migocka-Patrzałek, M., Niedbalska-Tarnowska, J., Jagla, K., 2016. Zebrafish: A Model for the Study of Toxicants Affecting Muscle Development and Function. International Journal of Molecular Sciences 17, 1941.
Ebenstein, D.M., Pruitt, L.A., 2006. Nanoindentation of biological materials. Nano Today 1, 26–33.
Ebert, T., Tran, N., Schurgers, L., Stenvinkel, P., Shiels, P.G., 2022. Ageing – Oxidative stress, PTMs and disease. Molecular Aspects of Medicine 86, 101099.
eBioMedicine, 2022. The 3Rs of Animal Research. eBioMedicine 76, 103900.
El-Gazzar, A., Högler, W., 2021. Mechanisms of Bone Fragility: From Osteogenesis Imperfecta to Secondary Osteoporosis. IJMS 22, 625.
Embry, M.R., Belanger, S.E., Braunbeck, T.A., Galay-Burgos, M., Halder, M., Hinton, D.E., Léonard, M.A., Lillicrap, A., Norberg-King, T., Whale, G., 2010. The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquatic Toxicology 97, 79–87.
Etich, J., Leßmeier, L., Rehberg, M., Sill, H., Zaucke, F., Netzer, C., Semler, O., 2020. Osteogenesis imperfecta—pathophysiology and therapeutic options. Mol Cell Pediatr 7, 9.
Everts, V., Delaissé, J.M., Korper, W., Jansen, D.C., Tigchelaar-Gutter, W., Saftig, P., Beertsen, W., 2002. The Bone Lining Cell: Its Role in Cleaning Howship’s Lacunae and Initiating Bone Formation. J Bone Miner Res 17, 77–90.
Fan, J., Abedi-Dorcheh, K., Sadat Vaziri, A., Kazemi-Aghdam, F., Rafieyan, S., Sohrabinejad, M., Ghorbani, M., Rastegar Adib, F., Ghasemi, Z., Klavins, K., Jahed, V., 2022. A Review of Recent Advances in Natural Polymer-Based Scaffolds for Musculoskeletal Tissue Engineering. Polymers 14, 2097.
Fassier, A., 2021. Telescopic rodding in children: Technical progression from Dubow–Bailey to Fassier–DuvalTM. Orthopaedics & Traumatology: Surgery & Research 107, 102759.
Fisher, S., Jagadeeswaran, P., Halpern, M.E., 2003. Radiographic analysis of zebrafish skeletal defects. Developmental Biology 264, 64–76.
Fleisch, H.A., Russell, R.G.G., Bisaz, S., Mühlbauer, R.C., Williams, D.A., 1970. The Inhibitory Effect of Phosphonates on the Formation of Calcium Phosphate Crystals in vitro and on Aortic and Kidney Calcification in vivo. Eur J Clin Invest 1, 12–18.
Fleming, A., Sato, M., Goldsmith, P., 2005. High-Throughput In Vivo Screening for Bone Anabolic Compounds with Zebrafish. Journal of Biomolecular Screening 10, 823–831.
Florencio-Silva, R., Sasso, G.R.D.S., Sasso-Cerri, E., Simões, M.J., Cerri, P.S., 2015. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Research International 2015, 1–17.
Folkestad, L., Hald, J.D., Canudas‐Romo, V., Gram, J., Hermann, A.P., Langdahl, B., Abrahamsen, B., Brixen, K., 2016. Mortality and Causes of Death in Patients with Osteogenesis Imperfecta: A Register‐Based Nationwide Cohort Study. J Bone Miner Res 31, 2159–2166.
Forlino, A., Marini, J.C., 2016. Osteogenesis imperfecta. The Lancet 387, 1657–1671.
Fratzl, P., 2008. Collagen: Structure and Mechanics, an Introduction, in: Fratzl, Peter (Ed.), Collagen. Springer US, Boston, MA, pp. 1–13.
Ge, J., Wang, X., Cui, F., 2006. Microstructural characteristics and nanomechanical properties across the thickness of the wild-type zebrafish skeletal bone. Materials Science and Engineering: C 26, 710–715.
Gehlbach, S., Saag, K.G., Adachi, J.D., Hooven, F.H., Flahive, J., Boonen, S., Chapurlat, R.D., Compston, J.E., Cooper, C., Díez-Perez, A., Greenspan, S.L., LaCroix, A.Z., Netelenbos, J.C., Pfeilschifter, J., Rossini, M., Roux, C., Sambrook, P.N., Silverman, S., Siris, E.S., Watts, N.B., Lindsay, R., 2012. Previous fractures at multiple sites increase the risk for subsequent fractures: The global longitudinal study of osteoporosis in women. J Bone Miner Res 27, 645–653.
Genge, C.E., Lin, E., Lee, L., Sheng, X., Rayani, K., Gunawan, M., Stevens, C.M., Li, A.Y., Talab, S.S., Claydon, T.W., Hove-Madsen, L., Tibbits, G.F., 2016. The Zebrafish Heart as a Model of Mammalian Cardiac Function, in: Nilius, B., de Tombe, P., Gudermann, T., Jahn, R., Lill, R., Petersen, O.H. (Eds.), Reviews of Physiology, Biochemistry and Pharmacology, Vol. 171. Springer International Publishing, Cham, pp. 99–136.
Geurtzen, K., Vernet, A., Freidin, A., Rauner, M., Hofbauer, L.C., Schneider, J.E., Brand, M., Knopf, F., 2017. Immune Suppressive and Bone Inhibitory Effects of Prednisolone in Growing and Regenerating Zebrafish Tissues. Journal of Bone and Mineral Research 32, 2476–2488.
Gibson, L.J., 2003. Cellular Solids. MRS Bull. 28, 270–274.
Gochuico, B.R., Hossain, M., Talvacchio, S.K., Zuo, M.X.G., Barton, M., Dang Do, A.N., Marini, J.C., 2023. Pulmonary function and structure abnormalities in children and young adults with osteogenesis imperfecta point to intrinsic and extrinsic lung abnormalities. J Med Genet jmg-2022-109009.
Gullberg, B., Johnell, O., Kanis, J.A., 1997. World-wide Projections for Hip Fracture: Osteoporos Int 7, 407–413.
Hadjidakis, D.J., Androulakis, I.I., 2006. Bone Remodelling. Annals of the New York Academy of Sciences 1092, 385–396.
Hajat, C., Stein, E., 2018. The global burden of multiple chronic conditions: A narrative review. Preventive Medicine Reports 12, 284–293.
Harada, S., Rodan, G.A., 2003. Control of osteoblast function and regulation of bone mass. Nature 423, 349–355.
Hassler, N., Gamsjaeger, S., Hofstetter, B., Brozek, W., Klaushofer, K., Paschalis, E.P., 2015. Effects of long-term alendronate treatment on postmenopausal osteoporosis bone material properties. Osteoporosis International 26, 339–352.
Holmes, D.F., Lu, Y., Starborg, T., Kadler, K.E., 2018. Collagen Fibril Assembly and Function, in: Current Topics in Developmental Biology. Elsevier, pp. 107–142.
Homik, J., Suarez-Almazor, M.E., Shea, B., Cranney, A., Wells, G.A., Tugwell, P., 1998. Calcium and vitamin D for corticosteroid-induced osteoporosis. Cochrane Database of Systematic Reviews.
Hughes, M.L., Touron, D.R., 2021. Aging in Context: Incorporating Everyday Experiences into the Study of Subjective Age. Front. Psychiatry. 9;12:633234.
Hur, M., Gistelinck, C.A., Huber, P., Lee, J., Thompson, M.H., Monstad-Rios, A.T., Watson, C.J., McMenamin, S.K., Willaert, A., Parichy, D.M., Coucke, P., Kwon, R.Y., 2017. MicroCT-based phenomics in the zebrafish skeleton reveals virtues of deep phenotyping in a distributed organ system. eLife 6, e26014.
Iba, K., Takada, J., Sonoda, T., Yamashita, T., 2020. Effect of continuous long-term treatment for 10 years with bisphosphonate on Japanese osteoporosis patients. Journal of Bone and Mineral Metabolism 38, 240–247.
Ibrahim, A., Magliulo, N., Groben, J., Padilla, A., Akbik, F., Abdel Hamid, Z., 2020. Hardness, an Important Indicator of Bone Quality, and the Role of Collagen in Bone Hardness. JFB 11, 85.
Iovine, M.K., 2007. Conserved mechanisms regulate outgrowth in zebrafish fins. Nat. Chem. Biol. 3, 613–618.
Jensen, P.R., Andersen, T.L., Chavassieux, P., Roux, J.-P., Delaisse, J.-M., 2021. Bisphosphonates impair the onset of bone formation at remodelling sites. Bone 145, 115850.
Kan, L., 2013. Animal Models of Bone Diseases-A, in: Animal Models for the Study of Human Disease. Elsevier, pp. 353–390.
Kanis, J.A., Johnell, O., De Laet, C., Johansson, H., Oden, A., Delmas, P., Eisman, J., Fujiwara, S., Garnero, P., Kroger, H., McCloskey, E.V., Mellstrom, D., Melton, L.J., Pols, H., Reeve, J., Silman, A., Tenenhouse, A., 2004. A meta-analysis of previous fracture and subsequent fracture risk. Bone 35, 375–382.
Kelley, G.A., Kelley, K.S., Kohrt, W.M., 2013. Exercise and Bone Mineral Density in Premenopausal Women: A Meta-Analysis of Randomized Controlled Trials. International Journal of Endocrinology 2013, 1–16.
Knopf, F., Hammond, C., Chekuru, A., Kurth, T., Hans, S., Weber, C.W., Mahatma, G., Fisher, S., Brand, M., Schulte-Merker, S., Weidinger, G., 2011. Bone Regenerates via Dedifferentiation of Osteoblasts in the Zebrafish Fin. Developmental Cell 20, 713–724.
Laan, R.F.J.M., 1993. Low-Dose Prednisone Induces Rapid Reversible Axial Bone Loss in Patients with Rheumatoid Arthritis: A Randomized, Controlled Study. Ann Intern Med 119, 963.
Lacroix, D., 2009. Biomechanical Aspects of Bone Repair. Bone Repair Biomat (4). 106-118.
Langdahl, B., Ferrari, S., Dempster, D.W., 2016. Bone modelling and remodelling: potential as therapeutic targets for the treatment of osteoporosis. Therapeutic Advances in Musculoskeletal 8, 225–235.
Laurent, M.R., Goemaere, S., Verroken, C., Bergmann, P., Body, J.-J., Bruyère, O., Cavalier, E., Rozenberg, S., Lapauw, B., Gielen, E., 2022. Prevention and Treatment of Glucocorticoid-Induced Osteoporosis in Adults: Consensus Recommendations from the Belgian Bone Club. Front. Endocrinol. 13, 908727.
Lee K. J., Lisa Rambault, George Bou-Gharios, Peter D. Clegg, Riaz Akhtar, Gabriela Czanner, Rob van‘t Hof, Elizabeth G. Canty-Laird; 2022 Collagen (I) homotrimer potentiates the osteogenesis imperfecta (oim) mutant allele and reduces survival in male mice. Dis Model Mech 1 September; 15 (9): dmm049428.
Lieschke, G.J., Currie, P.D., 2007. Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8, 353–367.
Lin, X., Patil, S., Gao, Y.-G., Qian, A., 2020. The Bone Extracellular Matrix in Bone Formation and Regeneration. Front. Pharmacol. 11, 757.
Linde, F., Hvid, I., and Pongsoipetch, B., 1989. Energy absorptive properties of human trabecular bone specimens during axial compression. J. Orthop. Res. 7: 432-439.
Liu, Y., Luo, D., Wang, T., 2016. Hierarchical Structures of Bone and Bioinspired Bone Tissue Engineering. Small 12, 4611–4632.
Loundagin, L.L., Haider, I.T., Cooper, D.M.L., Edwards, W.B., 2020. Association between intracortical microarchitecture and the compressive fatigue life of human bone: A pilot study. Bone Reports 12, 100254.
Ma, C., Du, T., Niu, X., Fan, Y., 2022. Biomechanics and mechanobiology of the bone matrix. Bone Res 10, 59.
Mackay, E.W., Apschner, A., Schulte-Merker, S., 2013. A bone to pick with zebrafish. BoneKEy Reports 2.
Mäkitie, R.E., Costantini, A., Kämpe, A., Alm, J.J., Mäkitie, O., 2019. New Insights into Monogenic Causes of Osteoporosis. Front. Endocrinol. 10, 70.
Marcu, F., Bogdan, F., Muţiu, G., Lazăr, L., 2011. The histopathological study of osteoporosis. Rom J Morphol Embryol 52, 321–325.
Marengoni, A., Angleman, S., Melis, R., Mangialasche, F., Karp, A., Garmen, A., Meinow, B., Fratiglioni, L., 2011. Aging with multimorbidity: A systematic review of the literature. Ageing Research Reviews 10, 430–439.
Marques, I.J., Lupi, E., Mercader, N., 2019. Model systems for regeneration: zebrafish. Development 146, dev167692.
Mc Donald, D., Mc Donnell, T., Martin-Grace, J., Mc Manus, G., Crowley, R.K., 2023. Systematic review of health related-quality of life in adults with osteogenesis imperfecta. Orphanet J Rare Dis 18, 36.
Mercer, C., He, M.Y., Wang, R., Evans, A.G., 2006. Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone. Acta Biomaterialia 2, 59–68.
Meyers, M.A., Chen, P.-Y., 2014. Biological Materials Science: Biological Materials, Bioinspired Materials, and Biomaterials. Cambridge University Press, Cambridge.
Mirzoyan, Z., Sollazzo, M., Allocca, M., Valenza, A.M., Grifoni, D., Bellosta, P., 2019. Drosophila melanogaster: A Model Organism to Study Cancer. Front. Genet. 10, 51.
Mohamed, A.M., 2008. An overview of bone cells and their regulating factors of differentiation. Malays J Med Sci 15, 4–12.
Monma, Y., Shimada, Y., Nakayama, H., Zang, L., Nishimura, N., Tanaka, T., 2019. Aging-associated microstructural deterioration of vertebra in zebrafish. Bone Reports 11, 100215.
Morgan, E.F., Unnikrisnan, G.U., Hussein, A.I., 2018. Bone Mechanical Properties in Healthy and Diseased States. Annu. Rev. Biomed. Eng. 20, 119–143.
Nancollas, G.H., Tang, R., Phipps, R.J., Henneman, Z., Gulde, S., Wu, W., Mangood, A., Russell, R.G.G., Ebetino, F.H., 2006. Novel insights into actions of bisphosphonates on bone: Differences in interactions with hydroxyapatite. Bone 38, 617–627.
Natali, A.N., Carniel, E.L., Pavan, P.G., 2008. Constitutive modelling of inelastic behaviour of cortical bone. Medical Engineering & Physics 30, 905–912.
NHS, 2022. Osteoporosis: An Overview [website]. URL https://www.nhs.uk/conditions/osteoporosis/ (accessed 3.26.19).
Novitskaya, E., Zin, C., Chang, N., Cory, E., Chen, P., D’Lima, D., Sah, R.L., McKittrick, J., 2014. Creep of trabecular bone from the human proximal tibia. Materials Science and Engineering: C 40, 219–227.
Oftadeh, R., Perez-Viloria, M., Villa-Camacho, J.C., Vaziri, A., Nazarian, A., 2015. Biomechanics and Mechanobiology of Trabecular Bone: A Review. Journal of Biomechanical Engineering 137, 010802.
Pahr, D.H., Reisinger, A.G., 2020. A Review on Recent Advances in the Constitutive Modeling of Bone Tissue. Curr Osteoporos Rep 18, 696–704.
Papapoulos, S.E., Cremers, S.C.L.M., 2007. Prolonged Bisphosphonate Release after Treatment in Children. N Engl J Med 356, 1075–1076.
Parambi, D.G.T., Unnikrishnan, M.K., Marathakam, A., Mathew, B., 2020. Demographic and Epidemiological Aspects of Aging, in: Nabavi, S.M., D’Onofrio, G., Nabavi, S.F. (Eds.), Nutrients and Nutraceuticals for Active & Healthy Ageing. Springer Singapore, Singapore, pp. 1–14.
Pasqualetti, S., Congiu, T., Banfi, G., Mariotti, M., 2015. Alendronate rescued osteoporotic phenotype in a model of glucocorticoid-induced osteoporosis in adult zebrafish scale. International Journal of Experimental Pathology 96, 11–20.
Pienkowski, D., Wood, C.L., Malluche, H.H., 2019. Young’s modulus and hardness of human trabecular bone with bisphosphonate treatment durations up to 20 years. Osteoporos Int 30, 277–285.
Pollintine, P., Luo, J., Offa-Jones, B., Dolan, P., Adams, M.A., 2009. Bone creep can cause progressive vertebral deformity. Bone 45, 466–472.
Rachner, T.D., Khosla, S., Hofbauer, L.C., 2011. Osteoporosis: now and the future. The Lancet 377, 1276–1287.
Rashmi, R., Mohanty, S.K., 2023. Examining chronic disease onset across varying age groups of Indian adults using competing risk analysis. Sci Rep 13, 5848.
Rho, J.-Y., Tsui, T.Y., Pharr, G.M., 1997. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18, 1325–1330.
Robinson, N.B., Krieger, Katherine, Khan, F.M., Huffman, W., Chang, M., Naik, A., Yongle, R., Hameed, I., Krieger, Karl, Girardi, L.N., Gaudino, M., 2019. The current state of animal models in research: A review. International Journal of Surgery 72, 9–13.
Rodriguez-Florez, N., Oyen, M.L., Shefelbine, S.J., 2013. Insight into differences in nanoindentation properties of bone. Journal of the Mechanical Behavior of Biomedical Materials 18, 90–99.
Rizzoli, R., Biver, E., 2015. Glucocorticoid-induced osteoporosis: who to treat with what agent? Nat Rev Rheumatol 11, 98–109.
Rose, M.R., 1991. Evolutionary biology of aging. Oxford University Press, New York.
Russell, R.G.G., 2007. Bisphosphonates: Mode of Action and Pharmacology. Pediatrics 119, S150–S162.
Russell, R.G.G., Mühlbauer, R.C., Bisaz, S., Williams, D.A., Fleisch, H., 1970. The influence of pyrophosphate, condensed phosphates, phosphonates and other phosphate compounds on the dissolution of hydroxyapatite in vitro and on bone resorption induced by parathyroid hormone in tissue culture and in thyroparathyroidectomised rats. Calc. Tis Res. 6, 183–196.
Screen, H.R.C., Berk, D.E., Kadler, K.E., Ramirez, F., Young, M.F., 2015. Tendon Functional Extracellular Matrix: TENDON FUNCTIONAL EXTRACELLULAR MATRIX. J. Orthop. Res. 33, 793–799.
Sharir, A., Barak, M.M., Shahar, R., 2008. Whole bone mechanics and mechanical testing. The Veterinary Journal 177, 8–17.
Sillence, D.O., Senn, A., Danks, D.M., 1979. Genetic heterogeneity in osteogenesis imperfecta. Journal of Medical Genetics 16, 101–116.
Silvent, J., Akiva, A., Brumfeld, V., Reznikov, N., Rechav, K., Yaniv, K., Addadi, L., Weiner, S., 2017. Zebrafish skeleton development: High resolution micro-CT and FIB-SEM block surface serial imaging for phenotype identification. PLoS ONE 12, e0177731.
Silverman, S., Curtis, J., Saag, K., Flahive, J., Adachi, J., Anderson, F., Chapurlat, R., Cooper, C., Diez-Perez, A., Greenspan, S., Hooven, F., Le Croix, A., March, L., Netelenbos, J.C., Nieves, J., Pfeilschifter, J., Rossini, M., Roux, C., Siris, E., Watts, N., Compston, J., 2015. International management of bone health in glucocorticoid-exposed individuals in the observational GLOW study. Osteoporos Int 26, 419–420.
Siris, E., Weinstein, R.S., Altman, R., Conte, J.M., Favus, M., Lombardi, A., Lyles, K., McIlwain, H., Murphy, W.A., Reda, C., Rude, R., Seton, M., Tiegs, R., Thompson, D., Tucci, J.R., Yates, A.J., Zimering, M., 1996. Comparative study of alendronate versus etidronate for the treatment of Paget’s disease of bone. The Journal of Clinical Endocrinology & Metabolism 81, 961–967.
Skarnes, W.C., Rosen, B., West, A.P., Koutsourakis, M., Bushell, W., Iyer, V., Mujica, A.O., Thomas, M., Harrow, J., Cox, T., Jackson, D., Severin, J., Biggs, P., Fu, J., Nefedov, M., de Jong, P.J., Stewart, A.F., Bradley, A., 2011. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337–342.
Szabo, E., Rimnac, C., 2022. Biomechanics of immature human cortical bone: A systematic review. Journal of the Mechanical Behavior of Biomedical Materials 125, 104889.
Szulc, P., 2020. Impact of Bone Fracture on Muscle Strength and Physical Performance - Narrative Review. Curr Osteoporos Rep 18, 633–645.
Tadano, S., Giri, B., 2011. X-ray diffraction as a promising tool to characterize bone nanocomposites. Science and Technology of Advanced Materials 12, 064708.
Taylor, M., Cotton, J., Zioupos, P., 2002. Finite Element Simulation of the Fatigue Behaviour of Cancellous Bone. Meccanica 37, 419–429.
United Nations, 2017a. World population ageing, 2017 highlights. United Nations., New York.
United Nations, 2017b. World population prospects, The 2017 revision. United Nations., New York.
Van Dijk, F.S., Sillence, D.O., 2014. Osteogenesis imperfecta: Clinical diagnosis, nomenclature and severity assessment. Am. J. Med. Genet. 164, 1470–1481.
Xie, S., Manda, K., Wallace, R.J., Levrero-Florencio, F., Simpson, A.H.R.W., Pankaj, P., 2017. Time Dependent Behaviour of Trabecular Bone at Multiple Load Levels. Ann Biomed Eng 45, 1219–1226.
Wan, J., Goldman, D., 2016. Retina regeneration in zebrafish. Current Opinion in Genetics & Development 40, 41–47.
Wang, J., Yang, C., Liu, Y., Li, Y., Xiong, Y., 2022. Using Nanoindentation to Characterize the Mechanical and Creep Properties of Shale: Load and Loading Strain Rate Effects. ACS Omega 7, 14317–14331.
Wang, H., Dwyer-Lindgren, L., Lofgren, K.T., Rajaratnam, J.K., Marcus, J.R., Levin-Rector, A., Levitz, C.E., Lopez, A.D., Murray, C.J., 2012. Age-specific and sex-specific mortality in 187 countries, 1970–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet 380, 2071–2094.
Wang, X., Bank, R.A., Tekoppele, J.M., Agrawal, C.M., 2001. The role of collagen in determining bone mechanical properties. Journal of Orthopaedic Research 19, 1021–1026.
Weigele, J., Franz-Odendaal, T.A., 2016. Functional bone histology of zebrafish reveals two types of endochondral ossification, different types of osteoblast clusters and a new bone type. J. Anat. 229, 92–103.
Whyte, M.P., 2023. Osteopetrosis: Discovery and early history of “marble bone disease.” Bone 171, 116737.
Wirth, T., 2019. The orthopaedic management of long bone deformities in genetically and acquired generalized bone weakening conditions. Journal of Children’s Orthopaedics 13, 12–21.
World Health Organization, 2020. Global Burden of Disease Collaborative Network, Global Burden of Disease Study 2019 (GBD 2019) Results. Institute for Health Metrics and Evaluation – IHME.
Wu, A.-M., Bisignano, C., James, S.L., Abady, G.G., Abedi, A., Abu-Gharbieh, E., Alhassan, R.K., Alipour, V., Arabloo, J., Asaad, M., Asmare, W.N., Awedew, A.F., Banach, M., Banerjee, S.K., Bijani, A., Birhanu, T.T.M., Bolla, S.R., Cámera, L.A., Chang, J.-C., Cho, D.Y., Chung, M.T., Couto, R.A.S., Dai, X., Dandona, L., Dandona, R., Farzadfar, F., Filip, I., Fischer, F., Fomenkov, A.A., Gill, T.K., Gupta, B., Haagsma, J.A., Haj-Mirzaian, A., Hamidi, S., Hay, S.I., Ilic, I.M., Ilic, M.D., Ivers, R.Q., Jürisson, M., Kalhor, R., Kanchan, T., Kavetskyy, T., Khalilov, R., Khan, E.A., Khan, M., Kneib, C.J., Krishnamoorthy, V., Kumar, G.A., Kumar, N., Lalloo, R., Lasrado, S., Lim, S.S., Liu, Z., Manafi, A., Manafi, N., Menezes, R.G., Meretoja, T.J., Miazgowski, B., Miller, T.R., Mohammad, Y., Mohammadian-Hafshejani, A., Mokdad, A.H., Murray, C.J.L., Naderi, M., Naimzada, M.D., Nayak, V.C., Nguyen, C.T., Nikbakhsh, R., Olagunju, A.T., Otstavnov, N., Otstavnov, S.S., Padubidri, J.R., Pereira, J., Pham, H.Q., Pinheiro, M., Polinder, S., Pourchamani, H., Rabiee, N., Radfar, A., Rahman, M.H.U., Rawaf, D.L., Rawaf, S., Saeb, M.R., Samy, A.M., Sanchez Riera, L., Schwebel, D.C., Shahabi, S., Shaikh, M.A., Soheili, A., Tabarés-Seisdedos, R., Tovani-Palone, M.R., Tran, B.X., Travillian, R.S., Valdez, P.R., Vasankari, T.J., Velazquez, D.Z., Venketasubramanian, N., Vu, G.T., Zhang, Z.-J., Vos, T., 2021. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. The Lancet Healthy Longevity 2, e580–e592.
Wu, Z., Baker, T.A., Ovaert, T.C., Niebur, G.L., 2011. The effect of holding time on nanoindentation measurements of creep in bone. Journal of Biomechanics 44, 1066–1072.
Yan, C., Zhang, S., Wang, C., Zhang, Q., 2019. A fructooligosaccharide from Achyranthes bidentata inhibits osteoporosis by stimulating bone formation. Carbohydrate Polymers 210, 110–118.
Yuan, X., Chen, S., Sun, C., Yuwen, L., 2022. A novel early diagnostic framework for chronic diseases with class imbalance. Sci Rep 12, 8614.
Zhang, Y., Cui, F.Z., Wang, X.M., Feng, Q.L., Zhu, X.D., 2002. Mechanical properties of skeletal bone in gene-mutated stöpseldtl28d and wild-type zebrafish (Danio rerio) measured by atomic force microscopy-based nanoindentation. Bone 30, 541–546.
Zhu, B., Hu, S., Guo, J., Dong, Z., Dong, Y., Li, F., 2023. Differences in the global exposure, mortality and disability of low bone mineral density between men and women: the underestimated burden in men. BMC Public Health 23, 991.
Zimmermann, E.A., Busse, B., Ritchie, R.O., 2015. The fracture mechanics of human bone: influence of disease and treatment. Bonekey Rep 4, 743.
Zinganell, A., Hegen, H., Walde, J., Bauer, A., Berek, K., Barket, R., Auer, M., Bsteh, G., Donnemiller, E., Egger, A., Grams, A., Griesmacher, A., Kroiss, A.S., Rettenwander, F., Tschallener, M., Tschoner, A., Berger, T., Deisenhammer, F., Di Pauli, F., 2023. Screening for osteoporosis in people with MS: A new risk score. Multiple Sclerosis and Related Disorders 74, 104726.
Zysset, P.K., Edward Guo, X., Edward Hoffler, C., Moore, K.E., Goldstein, S.A., 1999. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. Journal of Biomechanics 32, 1005–1012.
Chapter 3
Abd-Alameer, S.A., Daway, H.G., Rashid, H.G., 2020. Quality of medical microscope Image at different lighting condition. IOP Conf. Ser.: Mater. Sci. Eng. 871, 012072.
Bennet, M., Akiva, A., Faivre, D., Malkinson, G., Yaniv, K., Abdelilah-Seyfried, S., Fratzl, P., Masic, A., 2014. Simultaneous Raman Microspectroscopy and Fluorescence Imaging of Bone Mineralization in Living Zebrafish Larvae. Biophysical Journal 106, L17–L19.
Bensimon-Brito, A., Cardeira, J., Dionísio, G., Huysseune, A., Cancela, M.L., Witten, P.E., 2016. Revisiting in vivo staining with alizarin red S - a valuable approach to analyse zebrafish skeletal mineralization during development and regeneration. BMC Developmental Biology 16.
Bonicelli, A., Kranioti, E.F., Xhemali, B., Arnold, E., Zioupos, P., 2022. Assessing bone maturity: Compositional and mechanical properties of rib cortical bone at different ages. Bone 155, 116265.
Budinger, T.F., Brahme, A. (Eds.), 2014. Comprehensive biomedical physics. Volume 1, Nuclear medicine and molecular imaging. Elsevier, Amsterdam.
Cardeira, J., Gavaia, P.J., Fernández, I., Cengiz, I.F., Moreira-Silva, J., Oliveira, J.M., Reis, R.L., Cancela, M.L., Laizé, V., 2016. Quantitative assessment of the regenerative and mineralogenic performances of the zebrafish caudal fin. Sci Rep 6, 39191.
Charles, J.F., Sury, M., Tsang, K., Urso, K., Henke, K., Huang, Y., Russell, R., Duryea, J., Harris, M.P., 2017. Utility of quantitative micro-computed tomographic analysis in zebrafish to define gene function during skeletogenesis. Bone 101, 162–171.
Dorozhkin, S.V., 2012. Calcium orthophosphates and human beings: A historical perspective from the 1770s until 1940. Biomatter 2, 53–70.
Ebenstein, D.M., Pruitt, L.A., 2006. Nanoindentation of biological materials. Nano Today 1, 26–33.
Eriksen, E.F., 1986. Normal and Pathological Remodelling of Human Trabecular Bone: Three-Dimensional Reconstruction of the Remodelling Sequence in Normal and in Metabolic Bone Disease*. Endocrine Reviews 7, 379–408.
Fischer-Cripps, A.C., 2000. A review of analysis methods for sub-micron indentation testing. Vacuum 58, 569–585.
Ge, J., Wang, X., Cui, F., 2006. Microstructural characteristics and nanomechanical properties across the thickness of the wild-type zebrafish skeletal bone. Materials Science and Engineering: C 26, 710–715.
Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Lyman, C.E., Lifshin, E., Sawyer, L., Michael, J.R., 2003. Scanning Electron Microscopy and X-ray Microanalysis: Third Edition. Springer US, Boston, MA.
Huang, W.-C., Hsieh, Y.-S., Chen, I.-H., Wang, C.-H., Chang, H.-W., Yang, C.-C., Ku, T.-H., Yeh, S.-R., Chuang, Y.-J., 2010. Combined Use of MS-222 (Tricaine) and Isoflurane Extends Anesthesia Time and Minimizes Cardiac Rhythm Side Effects in Adult Zebrafish. Zebrafish 7, 297–304.
Ihnatouski, M., Pauk, J., Karev, D., Karev, B., 2020. AFM-Based Method for Measurement of Normal and Osteoarthritic Human Articular Cartilage Surface Roughness. Materials 13, 2302.
Khalili, M.H., Williams, C.J., Micallef, C., Duarte-Martinez, F., Afsar, A., Zhang, R., Wilson, S., Dossi, E., Impey, S.A., Goel, S., Aria, A.I., 2023. Nanoindentation Response of 3D Printed PEGDA Hydrogels in a Hydrated Environment. ACS Appl. Polym. Mater. 5, 1180–1190.
Lee K. J., Lisa Rambault, George Bou-Gharios, Peter D. Clegg, Riaz Akhtar, Gabriela Czanner, Rob van‘t Hof, Elizabeth G. Canty-Laird; 2022 Collagen (I) homotrimer potentiates the osteogenesis imperfecta (oim) mutant allele and reduces survival in male mice. Dis Model Mech 1 September; 15 (9): dmm049428.
Mahamid, J., Sharir, A., Addadi, L., Weiner, S., 2008. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase. Proc. Natl. Acad. Sci. U.S.A. 105, 12748–12753.
Morris, M.D., Mandair, G.S., 2011. Raman Assessment of Bone Quality. Clinical Orthopaedics & Related Research 469, 2160–2169.
Oliver, W.C., Pharr, G.M., 2004. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20.
Oliver, W.C., Pharr, G.M., 1992. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583.
Oliveira, R.F., Silva, J.F., Simões, J.M., 2011. Fighting Zebrafish: Characterization of Aggressive Behavior and Winner–Loser Effects. Zebrafish 8, 73–81.
Pei, S., Zhou, Y., Li, Y., Azar, T., Wang, W., Kim, D.-G., Liu, X.S., 2022. Instrumented nanoindentation in musculoskeletal research. Progress in Biophysics and Molecular Biology 176, 38–51.
Pfefferli, C., Jaźwińska, A., 2015. The art of fin regeneration in zebrafish: The Art of Fin Regeneration. Regeneration 2, 72–83.
Qian, L., Zhao, H., 2018. Nanoindentation of Soft Biological Materials. Micromachines 9, 654.
Ritman, E.L., 2004. Micro-Computed Tomography—Current Status and Developments. Annu. Rev. Biomed. Eng. 6, 185–208.
Sanderson, M.J., Smith, I., Parker, I., Bootman, M.D., 2014. Fluorescence Microscopy. Cold Spring Harb Protoc 2014, pdb.top071795.
Stokes, G., 1852. XXX. On the change of refrangibility of light. Phil. Trans. R. Soc. 142, 463–562.
Sun, X., Zhao, H., Yu, Y., Zhang, S., Ma, Z., Li, N., Yu, M., Hou, P., 2016. Variations of mechanical property of out circumferential lamellae in cortical bone along the radial by nanoindentation. AIP Advances 6, 115116.
Wu, Z., Baker, T.A., Ovaert, T.C., Niebur, G.L., 2011. The effect of holding time on nanoindentation measurements of creep in bone. Journal of Biomechanics 44, 1066–1072.
Zhou, W., Apkarian, R., Wang, Z.L., Joy, D., 2006. Fundamentals of Scanning Electron Microscopy (SEM), in: Zhou, W., Wang, Z.L. (Eds.), Scanning Microscopy for Nanotechnology. Springer New York, New York, NY, pp. 1–40.
Zhou, Y., Du, J., 2022. Atomic force microscopy (AFM) and its applications to bone-related research. Progress in Biophysics and Molecular Biology 176, 52–66.
Chapter 4
Azevedo AS, Grotek B, Jacinto A, Weidinger G, Saúde L. 2011. The Regenerative Capacity of the Zebrafish Caudal Fin Is Not Affected by Repeated Amputations. Karl MO, editor. PLoS ONE. 28;6(7).
Barrett R, Chappell C, Quick M, Fleming A. 2006. A rapid, high content, in vivo model of glucocorticoid-induced osteoporosis. Biotechnol. J. 1(6):651–5.
Bennet M, Akiva A, Faivre D, Malkinson G, Yaniv K, Abdelilah-Seyfried S, Fratzl P, Masic A. 2014. Simultaneous Raman Microspectroscopy and Fluorescence Imaging of Bone Mineralization in Living Zebrafish Larvae. Biophys. J.;106(4):L17–9.
Bensimon-Brito A, Cardeira J, Dionísio G, Huysseune A, Cancela ML, Witten PE. 2016. Revisiting in vivo staining with alizarin red S - a valuable approach to analyse zebrafish skeletal mineralization during development and regeneration. BMC Dev. Biol. 16(1).
Bergen DJM, Kague E, Hammond CL. 2019. Zebrafish as an Emerging Model for Osteoporosis: A Primary Testing Platform for Screening New Osteo-Active Compounds. Front. Endocrinol. 29;10.
Bernhard A, Milovanovic P, Zimmermann EA, Hahn M, Djonic D, Krause M, Breer S, Püschel K, Djuric M, Amling M, Busse B. 2013. Micro-morphological properties of osteons reveal changes in cortical bone stability during aging, osteoporosis, and bisphosphonate treatment in women. Osteoporos. Int. 24(10):2671–80.
Bruneel B, Witten PE. 2015. Power and challenges of using zebrafish as a model for skeletal tissue imaging. Connect. Tissue Res. 56(2):161–73.
Cardeira J, Gavaia PJ, Fernández I, Cengiz IF, Moreira-Silva J, Oliveira JM, Reis RL, Cancela ML, Laizé V. 2016. Quantitative assessment of the regenerative and mineralogenic performances of the zebrafish caudal fin. Sci. Rep.;6(1).
Chang Z, Chen P-Y, Chuang Y-J, Akhtar R. 2018. Zebrafish as a model to study bone maturation: Nanoscale structural and mechanical characterization of age-related changes in the zebrafish vertebral column. J. Mech. Behav. Biomed. Mater. 84:54–63.
Chavassieux P, Chapurlat R, Portero‐Muzy N, Roux J, Garcia P, Brown JP, Libanati C, Boyce RW, Wang A, Grauer A. 2019. Bone‐Forming and Antiresorptive Effects of Romosozumab in Postmenopausal Women with Osteoporosis: Bone Histomorphometry and Microcomputed Tomography Analysis After 2 and 12 Months of Treatment. J. Bone Miner. Res. 34(9):1597–608.
Chazotte B. 2012. Labelling Golgi with Fluorescent Ceramides. Cold Spring Harb. Protoc. 2012(8).
Cheng T-T, Lai H-M, Yu S-F, Chiu W-C, Hsu C-Y, Chen J-F, Chen Y-C. 2018. The impact of low-dose glucocorticoids on disease activity, bone mineral density, fragility fractures, and 10-year probability of fractures in patients with rheumatoid arthritis. J. Investig. Med. 66(6):1004–7.
Dorozhkin SV, Epple M. 2002. Biological and Medical Significance of Calcium Phosphates. Angew. Chem. Int. Ed. 41(17):3130–46.
Dreinhöfer KE, Mitchell PJ, Bégué T, Cooper C, Costa ML, Falaschi P, Hertz K, Marsh D, Maggi S, Nana A, Palm H, Speerin R, Magaziner J. 2018. A global call to action to improve the care of people with fragility fractures. Injury. 49(8):1393–7.
Embry MR, Belanger SE, Braunbeck TA, Galay-Burgos M, Halder M, Hinton DE, Léonard MA, Lillicrap A, Norberg-King T, Whale G. 2010. The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat. Toxicol. 97(2):79–87.
Fischer-Cripps AC. 2000. A review of analysis methods for sub-micron indentation testing. Vacuum.58(4):569–85.
Ge J, Wang X, Cui F. 2006. Microstructural characteristics and nanomechanical properties across the thickness of the wild-type zebrafish skeletal bone. Mater. Sci. Eng. C. 26(4):710–5.
Geurtzen K, Knopf F, Wehner D, Huitema LFA, Schulte-Merker S, Weidinger G. 2014. Mature osteoblasts dedifferentiate in response to traumatic bone injury in the zebrafish fin and skull. Development. 1;141(11):2225–34.
Geurtzen K, Knopf F. 2018. Adult Zebrafish Injury Models to Study the Effects of Prednisolone in Regenerating Bone Tissue. J. Vis. Exp. 18;(140).
Geurtzen K, Vernet A, Freidin A, Rauner M, Hofbauer LC, Schneider JE, Brand M, Knopf F. 2017. Immune Suppressive and Bone Inhibitory Effects of Prednisolone in Growing and Regenerating Zebrafish Tissues. J. Bone Miner. Res. 32(12):2476–88.
Hassler N, Gamsjaeger S, Hofstetter B, Brozek W, Klaushofer K, Paschalis EP. 2015. Effects of long-term alendronate treatment on postmenopausal osteoporosis bone material properties. Osteoporos. Int. 26(1):339–52.
He H, Wang C, Tang Q, Yang F, Xu Y. 2018. Possible mechanisms of prednisolone-induced osteoporosis in zebrafish larva. Biomed. Pharmacother. 101:981–7.
Huang W-C, Hsieh Y-S, Chen I-H, Wang C-H, Chang H-W, Yang C-C, Ku T-H, Yeh S-R, Chuang Y-J. 2010. Combined Use of MS-222 (Tricaine) and Isoflurane Extends Anesthesia Time and Minimizes Cardiac Rhythm Side Effects in Adult Zebrafish. Zebrafish. 7(3):297–304.
Iba K, Takada J, Sonoda T, Yamashita T. 2020. Effect of continuous long-term treatment for 10 years with bisphosphonate on Japanese osteoporosis patients. J. Bone Miner. Metab. 38(2):240–7.
Kim G-J, Yoo HS, Lee KJ, Choi JW, Hee An J. 2018. Image of the Micro-Computed Tomography and Atomic-Force Microscopy of Bone in Osteoporosis Animal Model. J. Nanosci. Nanotechnol. 18(10):6726–31.
Knopf F, Hammond C, Chekuru A, Kurth T, Hans S, Weber CW, Mahatma G, Fisher S, Brand M, Schulte-Merker S, Weidinger G. 2011. Bone Regenerates via Dedifferentiation of Osteoblasts in the Zebrafish Fin. Dev. Cell. 20(5):713–24.
Lin Y, Xiang X, Chen T, Gao C, Fu H, Wang L, Deng L, Zeng L, Zhang J. 2019. In vivo monitoring and high-resolution characterizing of the prednisolone-induced osteoporotic process on adult zebrafish by optical coherence tomography. Biomed. Opt. Express. 10(3):1184.
Loundagin LL, Haider IT, Cooper DML, Edwards WB. 2020. Association between intracortical microarchitecture and the compressive fatigue life of human bone: A pilot study. Bone Rep. 12:100254.
Ma X, Xu Z, Ding S, Yi G, Wang Q. 2017. Alendronate promotes osteoblast differentiation and bone formation in ovariectomy induced osteoporosis through interferon β/signal transducer and activator of transcription 1 pathway. Exp. Ther. Med. 27.
Mahamid J, Addadi L, Weiner S. 2011. Crystallization Pathways in Bone. Cells Tissues Organs.;194(2–4):92–7.
Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S, Paris O, Fratzl P, Weiner S, Addadi L. 2010. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc. Natl. Acad. Sci. 107(14):6316–21.
Mahamid J, Sharir A, Addadi L, Weiner S. 2008. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase. Proc. Natl. Acad. Sci. 105(35):12748–53.
Morris MD, Mandair GS. 2011. Raman Assessment of Bone Quality. Clin. Orthop. Relat. Res. 469(8):2160–9.
Odén A, McCloskey EV, Kanis JA, Harvey NC, Johansson H. 2015. Burden of high fracture probability worldwide: secular increases 2010–2040. Osteoporos. Int. 26(9):2243–8.
Pasqualetti S, Congiu T, Banfi G, Mariotti M. 2015. Alendronate rescued osteoporotic phenotype in a model of glucocorticoid-induced osteoporosis in adult zebrafish scale. Int. J. Exp. Pathol. 96(1):11–20.
Pfefferli C, Jaźwińska A. 2015. The art of fin regeneration in zebrafish: The Art of Fin Regeneration. Regeneration. 2(2):72–83.
Rachner TD, Khosla S, Hofbauer LC. 2011. Osteoporosis: now and the future. The Lancet. 377(9773):1276–87.
Rolvien T, Milovanovic P, Schmidt FN, Kroge S, Wölfel EM, Krause M, Wulff B, Püschel K, Ritchie RO, Amling M, Busse B. 2020. Long‐Term Immobilization in Elderly Females Causes a Specific Pattern of Cortical Bone and Osteocyte Deterioration Different from Postmenopausal Osteoporosis. J. Bone Miner. Res.
Russell RGG. 2007. Bisphosphonates: Mode of Action and Pharmacology. Pediatrics. Mar;119(Supplement 2):S150–62.
Schönbörner AA, Boivin G, Baud CA. 1979. The mineralization processes in Teleost fish scales. Cell Tissue Res. 202(2).
Toledano M, Toledano-Osorio M, Guerado E, Caso E, Aguilera FS, Osorio R. 2018. Biochemical assessment of nanostructures in human trabecular bone: Proposal of a Raman micro spectroscopy-based measurements protocol. Injury. 49:S11–21.
Uemoto T, Abe G, Tamura K. 2020. Regrowth of zebrafish caudal fin regeneration is determined by the amputated length. Sci. Rep. 10(1).
Wang L, Liu B, Li H, Yang W, Ding Y, Sinogeikin SV, Meng Y, Liu Z, Zeng XC, Mao WL. 2012. Long-Range Ordered Carbon Clusters: A Crystalline Material with Amorphous Building Blocks. Science. 337(6096):825–8.
Westerfield M. 1995. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio). 3rd ed. Eugene, OR: University of Oregon Press.
Yousefzadeh N, Kashfi K, Jeddi S, Ghasemi A. 2020. Ovariectomized rat model of osteoporosis: a practical guide. EXCLI J.;19:89–107.
Chapter 5
Axelsson, K.F., Nilsson, A.G., Wedel, H., Lundh, D., Lorentzon, M., 2017. Association Between Alendronate Use and Hip Fracture Risk in Older Patients Using Oral Prednisolone. JAMA 318, 146.
Barrett, R., Chappell, C., Quick, M., Fleming, A., 2006. A rapid, high content, in vivo model of glucocorticoid-induced osteoporosis. Biotechnol. J. 1, 651–655.
Bird, N.C., Mabee, P.M., 2003. Developmental morphology of the axial skeleton of the zebrafish, Danio rerio (Ostariophysi: Cyprinidae). Dev. Dyn. 228, 337–357.
Bruneel, B., Witten, P.E., 2015. Power and challenges of using zebrafish as a model for skeletal tissue imaging. Connect. Tissue Res. 56, 161–173.
Cardeira, J., Gavaia, P.J., Fernández, I., Cengiz, I.F., Moreira-Silva, J., Oliveira, J.M., Reis, R.L., Cancela, M.L., Laizé, V., 2016. Quantitative assessment of the regenerative and mineralogenic performances of the zebrafish caudal fin. Sci. Rep. 6.
Chandra, A., Rajawat, J., 2021. Skeletal Aging and Osteoporosis: Mechanisms and Therapeutics. Int. J. Mol. Sci. 22, 3553.
Charles, J.F., Sury, M., Tsang, K., Urso, K., Henke, K., Huang, Y., Russell, R., Duryea, J., Harris, M.P., 2017. Utility of quantitative micro-computed tomographic analysis in zebrafish to define gene function during skeletogenesis. Bone 101, 162–171.
Chazotte, B., 2012. Labelling Golgi with Fluorescent Ceramides. Cold Spring Harb. Protoc. 2012, pdb.prot070599.
Chotiyarnwong, P., McCloskey, E.V., 2020. Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat. Rev. Endocrinol. 16, 437–447.
Cotti, S., Huysseune, A., Koppe, W., Rücklin, M., Marone, F., Wölfel, E.M., Fiedler, I.A.K., Busse, B., Forlino, A., Witten, P.E., 2020. More Bone with Less Minerals? The Effects of Dietary Phosphorus on the Post-Cranial Skeleton in Zebrafish. Int. J. Mol. Sci. 21, 5429.
Delaisse, J.-M., Andersen, T.L., Kristensen, H.B., Jensen, P.R., Andreasen, C.M., Søe, K., 2020. Re-thinking the bone remodelling cycle mechanism and the origin of bone loss. Bone 141, 115628.
Embry, M.R., Belanger, S.E., Braunbeck, T.A., Galay-Burgos, M., Halder, M., Hinton, D.E., Léonard, M.A., Lillicrap, A., Norberg-King, T., Whale, G., 2010. The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat. Toxicol. 97, 79–87.
Eriksen, E.F., 1986. Normal and Pathological Remodelling of Human Trabecular Bone: Three-Dimensional Reconstruction of the Remodelling Sequence in Normal and in Metabolic Bone Disease*. Endocr. Rev. 7, 379–408.
Genest, F., Claußen, L., Rak, D., Seefried, L., 2021. Bone mineral density and fracture risk in adult patients with hypophosphatasia. Osteoporos. Int. 32, 377–385.
Georgiadis, M., Müller, R., Schneider, P., 2016. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils. J. R. Soc. Interface 13, 20160088.
Geurtzen, K., Knopf, F., 2018. Adult Zebrafish Injury Models to Study the Effects of Prednisolone in Regenerating Bone Tissue. J. Vis. Exp.
Geurtzen, K., Vernet, A., Freidin, A., Rauner, M., Hofbauer, L.C., Schneider, J.E., Brand, M., Knopf, F., 2017. Immune Suppressive and Bone Inhibitory Effects of Prednisolone in Growing and Regenerating Zebrafish Tissues. J. Bone Miner. Res. 32, 2476–2488.
Hassler, N., Gamsjaeger, S., Hofstetter, B., Brozek, W., Klaushofer, K., Paschalis, E.P., 2015. Effects of long-term alendronate treatment on postmenopausal osteoporosis bone material properties. Osteoporos. Int. 26, 339–352.
Hayes, A.J., Reynolds, S., Nowell, M.A., Meakin, L.B., Habicher, J., Ledin, J., Bashford, A., Caterson, B., Hammond, C.L., 2013. Spinal Deformity in Aged Zebrafish Is Accompanied by Degenerative Changes to Their Vertebrae that Resemble Osteoarthritis. PLoS ONE 8, e75787.
Hildebrand, T., Rüegsegger, P., 1997. A new method for the model‐independent assessment of thickness in three‐dimensional images. J. Microsc. 185, 67–75.
Huang, W.-C., Hsieh, Y.-S., Chen, I.-H., Wang, C.-H., Chang, H.-W., Yang, C.-C., Ku, T.-H., Yeh, S.-R., Chuang, Y.-J., 2010. Combined Use of MS-222 (Tricaine) and Isoflurane Extends Anesthesia Time and Minimizes Cardiac Rhythm Side Effects in Adult Zebrafish. Zebrafish 7, 297–304.
Hur, M., Gistelinck, C.A., Huber, P., Lee, J., Thompson, M.H., Monstad-Rios, A.T., Watson, C.J., McMenamin, S.K., Willaert, A., Parichy, D.M., Coucke, P., Kwon, R.Y., 2017. MicroCT-based phenomics in the zebrafish skeleton reveals virtues of deep phenotyping in a distributed organ system. eLife 6, e26014.
Iba, K., Takada, J., Sonoda, T., Yamashita, T., 2020. Effect of continuous long-term treatment for 10 years with bisphosphonate on Japanese osteoporosis patients. J. Bone Miner. Metab. 38, 240–247.
Ibrahim, A., Magliulo, N., Groben, J., Padilla, A., Akbik, F., Abdel Hamid, Z., 2020. Hardness, an Important Indicator of Bone Quality, and the Role of Collagen in Bone Hardness. J. Funct. Biomater. 11, 85.
Jensen, P.R., Andersen, T.L., Chavassieux, P., Roux, J.-P., Delaisse, J.-M., 2021. Bisphosphonates impair the onset of bone formation at remodelling sites. Bone 145, 115850.
Khajuria, D.K., Karasik, D., 2020. Novel model of restricted mobility induced osteopenia in zebrafish. J. Fish Biol. jfb.14369.
Lin, W.-Y., Dharini, K., Peng, C.-H., Lin, C.-Y., Yeh, K.-T., Lee, W.-C., Lin, M.-D., 2022. Zebrafish models for glucocorticoid-induced osteoporosis. Tzu Chi Med. J. 34, 373.
Lin, Y., Xiang, X., Chen, T., Gao, C., Fu, H., Wang, L., Deng, L., Zeng, L., Zhang, J., 2019. In vivo monitoring and high-resolution characterizing of the prednisolone-induced osteoporotic process on adult zebrafish by optical coherence tomography. Biomed. Opt. Express 10, 1184.
Ma, X., Xu, Z., Ding, S., Yi, G., Wang, Q., 2017. Alendronate promotes osteoblast differentiation and bone formation in ovariectomy‑induced osteoporosis through interferon‑β/signal transducer and activator of transcription 1 pathway. Exp. Ther. Med.
Mahamid, J., Sharir, A., Addadi, L., Weiner, S., 2008. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase. Proc. Natl. Acad. Sci. 105, 12748–12753.
Meyers, M.A., McKittrick, J., Chen, P.-Y., 2013. Structural Biological Materials: Critical Mechanics-Materials Connections. Science 339, 773–779.
Mohamed, A.M., 2008. An overview of bone cells and their regulating factors of differentiation. Malays. J. Med. Sci. MJMS 15, 4–12.
Monma, Y., Shimada, Y., Nakayama, H., Zang, L., Nishimura, N., Tanaka, T., 2019. Aging-associated microstructural deterioration of vertebra in zebrafish. Bone Rep. 11, 100215.
Oliver, W.C., Pharr, G.M., 2004. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20.
Oliver, W.C., Pharr, G.M., 1992. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583.
Pasqualetti, S., Congiu, T., Banfi, G., Mariotti, M., 2015. Alendronate rescued osteoporotic phenotype in a model of glucocorticoid-induced osteoporosis in adult zebrafish scale. Int. J. Exp. Pathol. 96, 11–20.
Percie du Sert, N., Ahluwalia, A., Alam, S., Avey, M.T., Baker, M., Browne, W.J., Clark, A., Cuthill, I.C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S.T., Howells, D.W., Hurst, V., Karp, N.A., Lazic, S.E., Lidster, K., MacCallum, C.J., Macleod, M., Pearl, E.J., Petersen, O.H., Rawle, F., Reynolds, P., Rooney, K., Sena, E.S., Silberberg, S.D., Steckler, T., Würbel, H., 2020. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biol. 18, e3000411.
Russell, R.G.G., 2007. Bisphosphonates: Mode of Action and Pharmacology. Pediatrics 119, S150–S162.
Silvent, J., Akiva, A., Brumfeld, V., Reznikov, N., Rechav, K., Yaniv, K., Addadi, L., Weiner, S., 2017. Zebrafish skeleton development: High resolution micro-CT and FIB-SEM block surface serial imaging for phenotype identification. PLOS ONE 12, e0177731.
United Nations Department of Economic and Social Affairs, Population Division., 2022. World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3.
Vandewalle, J., Luypaert, A., De Bosscher, K., Libert, C., 2018. Therapeutic Mechanisms of Glucocorticoids. Trends Endocrinol. Metab. 29, 42–54.
Vliegenthart, A.D.B., Tucker, C.S., Del Pozo, J., Dear, J.W., 2014. Zebrafish as model organisms for studying drug-induced liver injury: Zebrafish and drug-induced liver injury. Br. J. Clin. Pharmacol. 78, 1217–1227.
Weigele, J., Franz-Odendaal, T.A., 2016. Functional bone histology of zebrafish reveals two types of endochondral ossification, different types of osteoblast clusters and a new bone type. J. Anat. 229, 92–103.
Westerfield, M., 2000. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio). University of Oregon Press.
Yeh, E.J., Gitlin, M., Sorio, F., McCloskey, E., 2023. Estimating the future clinical and economic benefits of improving osteoporosis diagnosis and treatment among postmenopausal women across eight European countries. Arch. Osteoporos. 18, 68.
Zhang, Y., Cui, F.Z., Wang, X.M., Feng, Q.L., Zhu, X.D., 2002. Mechanical properties of skeletal bone in gene-mutated stöpseldtl28d and wild-type zebrafish (Danio rerio) measured by atomic force microscopy-based nanoindentation. Bone 30, 541–546.
Zimmermann, E.A., Riedel, C., Schmidt, F.N., Stockhausen, K.E., Chushkin, Y., Schaible, E., Gludovatz, B., Vettorazzi, E., Zontone, F., Püschel, K., Amling, M., Ritchie, R.O., Busse, B., 2019. Mechanical Competence and Bone Quality Develop During Skeletal Growth. J. Bone Miner. Res. 34, 1461–1472.
Chapter 6
Alcorta-Sevillano, N., Infante, A., Macías, I., Rodríguez, C.I., 2022. Murine Animal Models in Osteogenesis Imperfecta: The Quest for Improving the Quality of Life. IJMS 24, 184.
Astrom, E., 2002. Beneficial effect of long-term intravenous bisphosphonate treatment of osteogenesis imperfecta. Archives of Disease in Childhood 86, 356–364.
Carriero, A., Enderli, T., Burtch, S., Templet, J., 2016. Animal models of osteogenesis imperfecta: applications in clinical research. ORR Volume 8, 41–55.
Chipman, S.D., Sweet, H.O., McBride, D.J., Davisson, M.T., Marks, S.C., Shuldiner, A.R., Wenstrup, R.J., Rowe, D.W., Shapiro, J.R., 1993. Defective pro alpha 2(I) collagen synthesis in a recessive mutation in mice: a model of human osteogenesis imperfecta. Proc. Natl. Acad. Sci. U.S.A. 90, 1701–1705.
Cho, T.-J., Choi, I.H., Chung, C.Y., Yoo, W.J., Lee, K.S., Lee, D.Y., 2007. Interlocking Telescopic Rod for Patients with Osteogenesis Imperfecta: The Journal of Bone & Joint Surgery 89, 1028–1035.
El-Gazzar, A., Högler, W., 2021. Mechanisms of Bone Fragility: From Osteogenesis Imperfecta to Secondary Osteoporosis. IJMS 22, 625.
Fassier, A., 2021. Telescopic rodding in children: Technical progression from Dubow–Bailey to Fassier–DuvalTM. Orthopaedics & Traumatology: Surgery & Research 107, 102759.
Folkestad, L., Hald, J.D., Ersbøll, A.K., Gram, J., Hermann, A.P., Langdahl, B., Abrahamsen, B., Brixen, K., 2017. Fracture Rates and Fracture Sites in Patients with Osteogenesis Imperfecta: A Nationwide Register-Based Cohort Study: FRACTURE RATES IN OSTEOGENESIS IMPERFECTA. J Bone Miner Res 32, 125–134.
Forlino, A., Marini, J.C., 2016. Osteogenesis imperfecta. The Lancet 387, 1657–1671.
Fratzl, P., 2008. Collagen: Structure and Mechanics, an Introduction, in: Fratzl, Peter (Ed.), Collagen. Springer US, Boston, MA, pp. 1–13.
Gehlbach, S., Saag, K.G., Adachi, J.D., Hooven, F.H., Flahive, J., Boonen, S., Chapurlat, R.D., Compston, J.E., Cooper, C., Díez-Perez, A., Greenspan, S.L., LaCroix, A.Z., Netelenbos, J.C., Pfeilschifter, J., Rossini, M., Roux, C., Sambrook, P.N., Silverman, S., Siris, E.S., Watts, N.B., Lindsay, R., 2012. Previous fractures at multiple sites increase the risk for subsequent fractures: The global longitudinal study of osteoporosis in women. J Bone Miner Res 27, 645–653.
Geurtzen, K., Vernet, A., Freidin, A., Rauner, M., Hofbauer, L.C., Schneider, J.E., Brand, M., Knopf, F., 2017. Immune Suppressive and Bone Inhibitory Effects of Prednisolone in Growing and Regenerating Zebrafish Tissues. Journal of Bone and Mineral Research 32, 2476–2488.
Kanis, J.A., Johnell, O., De Laet, C., Johansson, H., Oden, A., Delmas, P., Eisman, J., Fujiwara, S., Garnero, P., Kroger, H., McCloskey, E.V., Mellstrom, D., Melton, L.J., Pols, H., Reeve, J., Silman, A., Tenenhouse, A., 2004. A meta-analysis of previous fracture and subsequent fracture risk. Bone 35, 375–382.
Labonte, D., Lenz, A.-K., Oyen, M.L., 2017. On the relationship between indentation hardness and modulus, and the damage resistance of biological materials. Acta Biomaterialia 57, 373–383.
Laizé, V., Gavaia, P.J., Cancela, M.L., 2014. Fish: a suitable system to model human bone disorders and discover drugs with osteogenic or osteotoxic activities. Drug Discovery Today: Disease Models 13, 29–37.
Lee K. J., Lisa Rambault, George Bou-Gharios, Peter D. Clegg, Riaz Akhtar, Gabriela Czanner, Rob van‘t Hof, Elizabeth G. Canty-Laird; 2022 Collagen (I) homotrimer potentiates the osteogenesis imperfecta (oim) mutant allele and reduces survival in male mice. Dis Model Mech 1 September; 15 (9): dmm049428.
Lieschke, G.J., Currie, P.D., 2007. Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8, 353–367.
Mcbride, Jr., D.J., Kadler, K.E., Hojima, Y., Prockop, D.J., 1992. Self-Assembly into Fibrils of a Homotrimer of Type I Collagen. Matrix 12, 256–263.
Novitskaya, E., Zin, C., Chang, N., Cory, E., Chen, P., D’Lima, D., Sah, R.L., McKittrick, J., 2014. Creep of trabecular bone from the human proximal tibia. Materials Science and Engineering: C 40, 219–227.
Oliver, W.C., Pharr, G.M., 2004. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20.
Oliver, W.C., Pharr, G.M., 1992. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583.
Pollintine, P., Luo, J., Offa-Jones, B., Dolan, P., Adams, M.A., 2009. Bone creep can cause progressive vertebral deformity. Bone 45, 466–472.
Raghunath, M., Bruckner, P., Steinmann, B., 1994. Delayed Triple Helix Formation of Mutant Collagen from Patient with Osteogenesis Imperfecta. Journal of Molecular Biology 236, 940–949.
Shapiro, J.R., McBride, D.J., Fedarko, N.S., 1995. OIM and Related Animal Models of Osteogenesis Imperfecta. Connective Tissue Research 31, 265–268.
Sillence, D., 1981. Osteogenesis imperfecta: an expanding panorama of variants. Clin Orthop Relat Res 11–25.
Sillence, D.O., Senn, A., Danks, D.M., 1979. Genetic heterogeneity in osteogenesis imperfecta. Journal of Medical Genetics 16, 101–116.
Skarnes, W.C., Rosen, B., West, A.P., Koutsourakis, M., Bushell, W., Iyer, V., Mujica, A.O., Thomas, M., Harrow, J., Cox, T., Jackson, D., Severin, J., Biggs, P., Fu, J., Nefedov, M., de Jong, P.J., Stewart, A.F., Bradley, A., 2011. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337–342.
Strevel, E.L., Papaioannou, A., Adachi, J.D., McNamara, M., 2005. Case report: osteogenesis imperfecta Elusive cause of fractures. Can Fam Physician 51, 1655–1657.
Van Dijk, F.S., Sillence, D.O., 2014. Osteogenesis imperfecta: Clinical diagnosis, nomenclature and severity assessment. Am. J. Med. Genet. 164, 1470–1481.
Vanleene, M., Porter, A., Guillot, P.-V., Boyde, A., Oyen, M., Shefelbine, S., 2012. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice. Bone 50, 1317–1323.
Wu, Z., Baker, T.A., Ovaert, T.C., Niebur, G.L., 2011. The effect of holding time on nanoindentation measurements of creep in bone. Journal of Biomechanics 44, 1066–1072.
Yao, X., Carleton, S.M., Kettle, A.D., Melander, J., Phillips, C.L., Wang, Y., 2013. Gender-Dependence of Bone Structure and Properties in Adult Osteogenesis Imperfecta Murine Model. Ann Biomed Eng 41, 1139–1149.
Chapter 7
Barrett, R., Chappell, C., Quick, M., Fleming, A., 2006. A rapid, high content, in vivo model of glucocorticoid-induced osteoporosis. Biotechnol. J. 1, 651–655.
Bembey, A.K., Oyen, M.L., Bushby, A.J., Boyde, A., 2006. Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philos Mag 86, 5691–5703.
Bertassoni, L.E., Swain, M.V., 2012. Influence of hydration on nanoindentation induced energy expenditure of dentin. J Biomech 45, 1679–1683.
Bird, N.C., Mabee, P.M., 2003. Developmental morphology of the axial skeleton of the zebrafish, Danio rerio (Ostariophysi: Cyprinidae). Develop Dyn 228, 337–357.
Bruneel, B., Witten, P.E., 2015. Power and challenges of using zebrafish as a model for skeletal tissue imaging. Connect Tissue Res 56, 161–173.
Burr, D.B., 2020. Fifty years of bisphosphonates: What are their mechanical effects on bone? Bone 138, 115518.
Bushby, A.J., Ferguson, V.L., Boyde, A., 2004. Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmethacrylate. J Mat Res 19, 249–259.
Cardeira, J., Gavaia, P.J., Fernández, I., Cengiz, I.F., Moreira-Silva, J., Oliveira, J.M., Reis, R.L., Cancela, M.L., Laizé, V., 2016. Quantitative assessment of the regenerative and mineralogenic performances of the zebrafish caudal fin. Sci Rep 6, 39191.
Chang, Z., Chen, P.-Y., Chuang, Y.-J., Akhtar, R., 2018. Zebrafish as a model to study bone maturation: Nanoscale structural and mechanical characterization of age-related changes in the zebrafish vertebral column. Journal of the Mechanical Behavior of Biomedical Materials 84, 54–63.
Chen, J.-R., Lai, Y.-H., Tsai, J.-J., Hsiao, C.-D., 2017. Live Fluorescent Staining Platform for Drug-Screening and Mechanism-Analysis in Zebrafish for Bone Mineralization. Molecules 22, 2068.
Cho, T.-J., Choi, I.H., Chung, C.Y., Yoo, W.J., Lee, K.S., Lee, D.Y., 2007. Interlocking Telescopic Rod for Patients with Osteogenesis Imperfecta: The Journal of Bone & Joint Surgery 89, 1028–1035.
Collymore, C., Tolwani, A., Lieggi, C., Rasmussen, S., 2014. Efficacy and safety of 5 anesthetics in adult zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci. 53, 198–203.
Dickenson, R.P., Hutton, W.C., Stott, J.R., 1981. The mechanical properties of bone in osteoporosis.
Ebenstein, D.M., Pruitt, L.A., 2006. Nanoindentation of biological materials. Nano Today 1, 26–33.
El-Gazzar, A., Högler, W., 2021. Mechanisms of Bone Fragility: From Osteogenesis Imperfecta to Secondary Osteoporosis. IJMS 22, 625.
Folkestad, L., Hald, J.D., Ersbøll, A.K., Gram, J., Hermann, A.P., Langdahl, B., Abrahamsen, B., Brixen, K., 2017. Fracture Rates and Fracture Sites in Patients with Osteogenesis Imperfecta: A Nationwide Register-Based Cohort Study: fracture rates in osteogenesis imperfecta. J Bone Miner Res 32, 125–134.
Forlino, A., Marini, J.C., 2016. Osteogenesis imperfecta. The Lancet 387, 1657–1671.
Genest, F., Claußen, L., Rak, D., Seefried, L., 2021. Bone mineral density and fracture risk in adult patients with hypophosphatasia. Osteoporos Int 32, 377–385.
Georgiadis, M., Müller, R., Schneider, P., 2016. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils. J. R. Soc. Interface. 13, 20160088.
Geurtzen, K., Vernet, A., Freidin, A., Rauner, M., Hofbauer, L.C., Schneider, J.E., Brand, M., Knopf, F., 2017. Immune Suppressive and Bone Inhibitory Effects of Prednisolone in Growing and Regenerating Zebrafish Tissues. Journal of Bone and Mineral Research 32, 2476–2488.
He, H., Wang, C., Tang, Q., Yang, F., Xu, Y., 2018. Possible mechanisms of prednisolone-induced osteoporosis in zebrafish larva. Biomedicine & Pharmacotherapy 101, 981–987.
Ibrahim, A., Magliulo, N., Groben, J., Padilla, A., Akbik, F., Abdel Hamid, Z., 2020. Hardness, an Important Indicator of Bone Quality, and the Role of Collagen in Bone Hardness. JFB 11, 85.
Kanis, J.A., Kanis, J.A., 1994. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. Osteoporosis Int 4, 368–381.
Kashii, M., Hashimoto, J., Nakano, T., Umakoshi, Y., Yoshikawa, H., 2008. Alendronate treatment promotes bone formation with a less anisotropic microstructure during intramembranous ossification in rats. J Bone Miner Metab 26, 24–33.
Kelley, G.A., Kelley, K.S., Kohrt, W.M., 2013. Exercise and Bone Mineral Density in Premenopausal Women: A Meta-Analysis of Randomized Controlled Trials. International Journal of Endocrinology 2013, 1–16.
Khajuria, D.K., Karasik, D., 2020. Novel model of restricted mobility induced osteopenia in zebrafish. J Fish Biol jfb.14369.
Labonte, D., Lenz, A.-K., Oyen, M.L., 2017. On the relationship between indentation hardness and modulus, and the damage resistance of biological materials. Acta Biomaterialia 57, 373–383.
Lee K. J., Lisa Rambault, George Bou-Gharios, Peter D. Clegg, Riaz Akhtar, Gabriela Czanner, Rob van‘t Hof, Elizabeth G. Canty-Laird; 2022 Collagen (I) homotrimer potentiates the osteogenesis imperfecta (oim) mutant allele and reduces survival in male mice. Dis Model Mech 1 September; 15 (9): dmm049428.
Lin, W.-Y., Dharini, K., Peng, C.-H., Lin, C.-Y., Yeh, K.-T., Lee, W.-C., Lin, M.-D., 2022. Zebrafish models for glucocorticoid-induced osteoporosis. Tzu Chi Med J 34, 373.
Lin, Y., Xiang, X., Chen, T., Gao, C., Fu, H., Wang, L., Deng, L., Zeng, L., Zhang, J., 2019. In vivo monitoring and high-resolution characterizing of the prednisolone-induced osteoporotic process on adult zebrafish by optical coherence tomography. Biomedical Optics Express 10, 1184.
Loundagin, L.L., Haider, I.T., Cooper, D.M.L., Edwards, W.B., 2020. Association between intracortical microarchitecture and the compressive fatigue life of human bone: A pilot study. Bone Reports 12, 100254.
Ma, X., Xu, Z., Ding, S., Yi, G., Wang, Q., 2017. Alendronate promotes osteoblast differentiation and bone formation in ovariectomy‑induced osteoporosis through interferon‑β/signal transducer and activator of transcription 1 pathway. Exp Ther Med.
Mahamid, J., Addadi, L., Weiner, S., 2011. Crystallization Pathways in Bone. Cells Tissues Organs 194, 92–97.
Mahamid, J., Aichmayer, B., Shimoni, E., Ziblat, R., Li, C., Siegel, S., Paris, O., Fratzl, P., Weiner, S., Addadi, L., 2010. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc. Natl. Acad. Sci. U.S.A. 107, 6316–6321.
Mahamid, J., Sharir, A., Addadi, L., Weiner, S., 2008. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase. Proceedings of the National Academy of Sciences 105, 12748–12753.
Mitchell, S.J., Scheibye-Knudsen, M., Longo, D.L., De Cabo, R., 2015. Animal Models of Aging Research: Implications for Human Aging and Age-Related Diseases. Annu. Rev. Anim. Biosci. 3, 283–303.
Monma, Y., Shimada, Y., Nakayama, H., Zang, L., Nishimura, N., Tanaka, T., 2019. Aging-associated microstructural deterioration of vertebra in zebrafish. Bone Reports 11, 100215.
Novitskaya, E., Zin, C., Chang, N., Cory, E., Chen, P., D’Lima, D., Sah, R.L., McKittrick, J., 2014. Creep of trabecular bone from the human proximal tibia. Materials Science and Engineering: C 40, 219–227.
Oyen, M.L., 2015. Nanoindentation of hydrated materials and tissues. Curr Opi Solid State Mat Sci 19, 317–323.
Pasqualetti, S., Congiu, T., Banfi, G., Mariotti, M., 2015. Alendronate rescued osteoporotic phenotype in a model of glucocorticoid-induced osteoporosis in adult zebrafish scale. Int. J. Exp. Path. 96, 11–20.
Pollintine, P., Luo, J., Offa-Jones, B., Dolan, P., Adams, M.A., 2009. Bone creep can cause progressive vertebral deformity. Bone 45, 466–472.
Puri, S., Aegerter-Wilmsen, T., Jaźwińska, A., Aegerter, C.M., 2018. In vivo quantification of mechanical properties of caudal fins in adult zebrafish. The Journal of Experimental Biology 221, jeb171777.
Rho, J.-Y., Tsui, T.Y., Pharr, G.M., 1997. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18, 1325–1330.
Rodriguez-Florez, N., Oyen, M.L., Shefelbine, S.J., 2013. Insight into differences in nanoindentation properties of bone. Journal of the Mechanical Behavior of Biomedical Materials 18, 90–99.
Sehring, I., Mohammadi, H.F., Haffner-Luntzer, M., Ignatius, A., Huber-Lang, M., Weidinger, G., 2022. Zebrafish fin regeneration involves generic and regeneration-specific osteoblast injury responses. eLife 11, e77614.
Sehring, I., Weidinger, G., 2022. Zebrafish Fin: Complex Molecular Interactions and Cellular Mechanisms Guiding Regeneration. Cold Spring Harb Perspect Biol 14, a040758.
Shapiro, J.R., McBride, D.J., Fedarko, N.S., 1995. OIM and Related Animal Models of Osteogenesis Imperfecta. Connective Tissue Research 31, 265–268.
Sillence, D.O., Senn, A., Danks, D.M., 1979. Genetic heterogeneity in osteogenesis imperfecta. Journal of Medical Genetics 16, 101–116.
Skarnes, W.C., Rosen, B., West, A.P., Koutsourakis, M., Bushell, W., Iyer, V., Mujica, A.O., Thomas, M., Harrow, J., Cox, T., Jackson, D., Severin, J., Biggs, P., Fu, J., Nefedov, M., de Jong, P.J., Stewart, A.F., Bradley, A., 2011. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337–342.
Szabo, E., Rimnac, C., 2022. Biomechanics of immature human cortical bone: A systematic review. Journal of the Mechanical Behavior of Biomedical Materials 125, 104889.
Vanleene, M., Porter, A., Guillot, P.-V., Boyde, A., Oyen, M., Shefelbine, S., 2012. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice. Bone 50, 1317–1323.
Weigele, J., Franz-Odendaal, T.A., 2016. Functional bone histology of zebrafish reveals two types of endochondral ossification, different types of osteoblast clusters and a new bone type. J. Anat. 229, 92–103.
Witten, P.E., Huysseune, A., 2009. A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biological Reviews 84, 315–346.
Zhang, Y., Cui, F.Z., Wang, X.M., Feng, Q.L., Zhu, X.D., 2002. Mechanical properties of skeletal bone in gene-mutated stöpseldtl28d and wild-type zebrafish (Danio rerio) measured by atomic force microscopy-based nanoindentation. Bone 30, 541–546.
Zimmermann, E.A., Riedel, C., Schmidt, F.N., Stockhausen, K.E., Chushkin, Y., Schaible, E., Gludovatz, B., Vettorazzi, E., Zontone, F., Püschel, K., Amling, M., Ritchie, R.O., Busse, B., 2019. Mechanical Competence and Bone Quality Develop During Skeletal Growth. J Bone Miner Res 34, 1461–1472.
Chapter 8
Cardeira, J., Gavaia, P.J., Fernández, I., Cengiz, I.F., Moreira-Silva, J., Oliveira, J.M., Reis, R.L., Cancela, M.L., Laizé, V., 2016. Quantitative assessment of the regenerative and mineralogenic performances of the zebrafish caudal fin. Sci Rep 6, 39191.
Carriero, A., Enderli, T., Burtch, S., Templet, J., 2016. Animal models of osteogenesis imperfecta: applications in clinical research. ORR Volume 8, 41–55.
Oliver, W.C., Pharr, G.M., 2004. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20.
Oliver, W.C., Pharr, G.M., 1992. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583.
Pollintine, P., Luo, J., Offa-Jones, B., Dolan, P., Adams, M.A., 2009. Bone creep can cause progressive vertebral deformity. Bone 45, 466–472.
Skarnes, W.C., Rosen, B., West, A.P., Koutsourakis, M., Bushell, W., Iyer, V., Mujica, A.O., Thomas, M., Harrow, J., Cox, T., Jackson, D., Severin, J., Biggs, P., Fu, J., Nefedov, M., de Jong, P.J., Stewart, A.F., Bradley, A., 2011. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337–342.
Weigele, J., Franz-Odendaal, T.A., 2016. Functional bone histology of zebrafish reveals two types of endochondral ossification, different types of osteoblast clusters and a new bone type. J. Anat. 229, 92–103.