研究生: |
吳念勳 Wu, Nien-Hsun |
---|---|
論文名稱: |
以飛秒時間解析螢光光譜研究 3-氰基-4-甲基-7-羥基香豆素錯合物之 激發態質子轉移反應 Excited-State Proton Transfer Reaction in 3-Cyano-4-Methyl-7-Hydroxycoumarin Complexes Studied by Femtosecond Time-resolved Fluorescence Spectroscopy |
指導教授: |
鄭博元
Cheng, Po-Yuan |
口試委員: |
朱立岡
Chu, Li-Kang 高雅婷 Kao, Ya-ting |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 112 |
中文關鍵詞: | 激發態質子轉移 、化學動力學 |
外文關鍵詞: | excited--state proton transfer, reaction dynamics |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以具有質子給體之3-氰基-4-甲基-7-羥基香豆素(3-Cyano-4-methyl-7-hydroxycoumarin,3CN4MU)作為研究分子,使其與不同質子親和力的質子受體N-甲基咪唑(1-Methyl Imidazole,1MI)或三乙基胺(Triethylamine,TEA)形成氫鍵錯合物,並比較此錯合物在不同極性溶劑中的激發態質子轉移行為。我們使用靜態吸收光譜、靜態螢光光譜以及奈秒時間解析螢光光譜得到其光譜特徵,再以實驗室自行架設之超快時間解析光學克爾光閘螢光光譜(ultrafast time-resolved optical Kerr gating fluorescence spectroscopy)取得時間解析螢光光譜,並以密度泛函理論(density functional theory)計算3CN4MU錯合物於激發前後的構型變化。綜合各項實驗及計算結果指認錯合物的不同構型,並討論其激發態質子轉移(excited state proton transfer, ESPT)。3CN4MU與較強質子親和力的TEA形成之錯合物於基態已發生質子轉移,因此無法有效觀察其ESPT現象。但在3CN4MU與較弱質子親和力的1MI之錯合物,實驗結果及理論計算均顯示為基態非質子轉移氫鍵錯合物。我們發現3CN4MU-1MI錯合物於非極性的甲苯中,溶劑分子無法透過solvation幫助錯合物質子轉移,因此在激發態質子轉移並不顯著。但在極性較高的乙酸乙酯溶液中,3CN4MU-1MI可藉由solvation幫助質子轉移,並有效地降低其自由能而穩定其分子,因此我們認為3CN4MU-1MI於乙酸乙酯溶液中可發生激發態質子轉移。在時間解析光譜中,我們以三個指數函數擬合全螢光強度P(t),分別為0.6±0.3 ps、28±3 ps以及2290±50 ps。我們將0.6 ps指認為質子從3CN4MU轉移至1MI的第一步,為一solvation-controlled step,將28 ps指認為3CN4MU-1MI離子對進行進一步自身結構之調整,以降低整體離子對自由能之過程。2290 ps則為質子轉移離子對之激發態生命期。
We studied intermolecular excited-state proton transfer (ESPT) dynamics in hydrogen-bonded complexes of 3-cyano-4-methyl-7-hydroxycoumarin (3CN4MU) by using steady-state absorption/fluorescence spectroscopy and ultrafast time-resolved optical Kerr gating fluorescence spectroscopy. Two different proton acceptors, 1-methyl imidazole (1MI) and triethylamine (TEA), were studied, and the experiments were carried out in strong- and weak-polarity solvents. We also carried out density-functional-theory (DFT) calculations to help us interpreting the experimental results.
We found that 3CN4MU-TEA complex undergoes proton transfer in its ground state in both polar and non-polar solvents. In 3CN4MU-1MI complex, the proton transfer does not occur in ground state, as confirmed by experiments and DFT calculations. Due to the lack of solvation, ESPT in 3CN4MU-1MI complex can only partially occur in non-polar solvent. However, the ESPT of 3CN4MU-1MI complex occurs in polar solvent. We used a tri-exponential decay function to fit the total fluorescence intensity function (P(t)) and the time constants are 0.6±0.3ps, 28±3ps and 2290±50ps.The fastest component is assigned to the first step of ESPT, which is a solvation-controlled step. The second component is assigned to a structural relaxation which stabilizes the ion pair. The last one is the lifetime of the ESPT complex.
1. Piatkevich, K. D.; Malashkevich, V. N.; Almo. S. C.; Verkhusha. V. V. J. Am. Chem. Soc. 2010, 132 (31), 10762–10770.
2. Das, A.; Banerjee, T.; Hanson, K. Chem. Commun., 2016, 52, 1350–1353.
3. Berera, R.; van Grondelle. R.; Kennis, JTM. Photosynth Res. 2009, 101, 105–118.
4. Förster, T. Natur. 1949, 36,186.
5. Förster, T. Z. Electrochem. Angew. Phys. Chem. 1952, 42, 531.
6. Förster, T. Elektrochem. 1950,54,42.
7. Förster, T. Pure Appl. Chem. 1970, 4, 43.
8. Weller, A. Z. Electrochem. 1954, 58, 849.
9. Weller, A. Z. Phys. Chem. N. F. 1958, 17, 224.
10. Weller, A. Prog, React. Kinet. 1961, 1, 187.
11. Urban, W.; Weller, A. Ber. Bunsen-Ges. Phys. Chem. 1958, 67, 787.
12. Weller, A. Discuss. Faraday Soc. 1959, 27, 28.
13. Moriya, T. Bull. Chem. Soc. Jpn. 1983, 56, 6
14. Agmon, N. J. Phys. Chem. A 2005, 109, 13-35.
15. Grabowski, Z. R.;Grabowska, A. Z. Phys. Chemie. 1976, 101 (6), 197–208.
16. Rotkiewicz, K.; Grabowski, Z. R. Trans. Faraday Soc. 1969, 65, 3263.
17. Fink, D. W.; Köhler, W. R. Analyt. Chem. 1970, 42, 990.
18. Yakatan, G. J.; Juneau, R. J.; Schulman, S. G. Analyt. Chem. 1972, 44, 1044.
19. Nakashima, M.; Sonsa, J. A.; Clapp, R. C. Nature (Phys. Sci.) 1972, 235, 16.
20. Bardez, E.; Boutin, P.; Valeur, B. Chem. Phys. Lett. 1992, 191 (2), 124-148
21. Moriya, T. Bull. Chem. Soc. Jpn. 1988, 61, 1873
22. Westlake, B. C.;Paul, J.; Bettis, S. E.; Hampton, S. D.; Mehl, B. P.; Meyer, T. J.; Papanikolas, J. M. J. Phys. Chem. B 2012, 116 (51), 14886–14891.
23. Savarese, M.; Netti, P. A.; Adamo, C.; Rega, N.; Ciofini, I. J. Phys. Chem. B. 2013, 117 (50), 16165–16173.
24. Takakusa, M. J. Phys. Chem. 1979, 83 (7), 810–813.
25. J. Sérgio Seixas de Melo,; Maçanita, A. L. J. Phys. Chem. B 2015, 119 (6), 2604–2610
1.Fleming, G. R., Chemical Applications of Ultrafast Spectroscopy Oxford: New York, 1986.
2. Lakowicz, J. R., Principles of Fluorescence Spectroscopy. 2nd ed.; Plenum Press: New York, 1999.
3. Boyd, R. W., Nonlinear Optics. Academic Press: San Deigo, CA, 1992.
4. http://www.moxtek.com/optics/visible_light.html.
5. Kalpouzos, C.; Lotshaw, W. T.; McMorrow, D.; Wallace, G. A. K., J. Phys. Chem. 1987, 91.
6. Kinoshita, S.; Ozawa, H.; Kanematsu, Y.; Tanaka, I.; Sugimoto, N.; Fujiwara, S., Rev. Sci. Instrum. 2000, 71 (9), 3317-3322.
7. Marcus, Y., The Properties of Solvents. John Wiley: Sons, New York, 1998.
8. Neelakandan, M.; Pant, D.; Quitevis, E. L., Chem. Phys. Lett. 1997, 265.
9. Weber, M. J., Handbook of Optical Materials. CRC Press: Boca Raton, FL, 2003.
10. Kalpouzos, C.; Lotshaw, W. T.; Mcmorrow, D.; Kenneywallace, G. A., J. Phys. Chem. 1987, 91 (8), 2028–2030.
11. Takeda, J.; Nakajima, K.; Kurita, S.; Tomimoto, S.; Saito, S.; Suemoto, T., Physical Review B 2000, 62 (15), 10083-10087.
12. Schmidt, B.; Laimgruber, S.; Zinth, W.; Gilch, P., Applied Physics B-Lasers and Optics 2003, 76 (8), 809–814.
13. Arzhantsev, S.; Maroncelli, M., Appl. Spectrosc. 2005, 59 (2), 206–220.
14. http://www.andor.com/pdfs/specs/du970n.pdf.
15. Gardecki, J. A.; Maroncelli, M., Appl. Spectrosc. 1998, 52 (9), 1179–1189.
16. Bevinton, P. R.; Robinson, D. K., Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill: New York, 1992.
17. http://www.cvimellesgriot.com/glossary/imagesDir/016.gif.
18. 洪志昌,以超快時間解析克爾光閘螢光光譜研究四氰基乙烯-甲基苯電子給體-受體錯合物之電子轉移動態學,國立清華大學博士論文,2010。
1. Takakusa, M. J. Phys. Chem. 1979, 83 (7), 810–813.
2. Crampton, M. R.; Robotham, I. A. J. Chem. Res. 1997, 22–23.
3. NIST material measurement laboratory database.
4. Westlake, B. C.; Brennaman, M. K.; Concepcion, J. J.; Paul, J. J.; Bettis, S. E.; Hampton, S. D.; Miller, S. A.; Lebedeva, N. V.; Forbes, M. D. E.; Moran, A. M.; Meyer, T. J.; Papanikolas, J. M. Proc. Natl. Acad. Sci. 2011, 108 (21), 8554–8558.
5. Tetsuo, M. Bull. Chem. Soc. Jpn. 1983, 56, 6–14.
6. Savarese, M.; Netti, P. A.; Adamo, C.; Rega, N.; Ciofini, I. J. Phys. Chem. B 2013, 117, 16165−16173.
7. Neelakantan, P. Proc. I. A. Sci. A. 1963, 57 (6), 330–336.
8. Wilmshurst, J. K.; Bernstein, H. J. C. J. Chem., 1957, 35 (8), 911–925.
9. Nagasawa, Y.; Yartsev, A. P.; Tominaga, K.; Bisht, P. B.; Johnson, A. E.; Yoshihara, K. J. Phys. Chem., 1995, 99 (2), 653–662.
10. Horng, M. L.; Gardecki, J. A.; Papazyan, A.; Maroncelli, M. J. Phys. Chem., 1995, 99 (48), 17311–17337.
11. Sérgio, F. S.; Fernandes, P. A.; Ramos, M. J. J. Phys. Chem. A, 2007, 111 (42), 10439–10452.
12. Moriya, T. Bull. Chem. Soc. Jpn., 1988, 61(6), 1873–1886.
1. Takakusa, M. J. Phys. Chem. 1979, 83 (7), 810–813.
2. Westlake, B. C.; Brennaman, M. K.; Concepcion, J. J.; Paul, J. J.; Bettis, S. E.; Hampton, S. D.; Miller, S. A.; Lebedeva, N. V.; Forbes, M. D. E.; Moran, A. M.; Meyer, T. J.; Papanikolas, J. M. Proc. Natl. Acad. Sci. 2011, 108 (21), 8554–8558.
3. Horng, M. L.; Gardecki, J. A.; Papazyan, A.; Maroncelli, M. J. Phys. Chem., 1995, 99 (48), 17311–17337.
4. Savarese, M.; Netti, P. A.; Adamo, C.; Rega, N.; Ciofini, I. J. Phys. Chem. B 2013, 117, 16165−16173.
5. Tetsuo, M. Bull. Chem. Soc. Jpn. 1983, 56, 6–14.
6. Sun, T.; Wang, Y, B. Acta. Phys. Chim. Sin., 2011, 27 (11), 2553–2558
7. Choudhury, S. D.; Pal, H. J. Phys. Chem. B, 2009, 113 (19), 6736–6744.