簡易檢索 / 詳目顯示

研究生: 徐偉軒
Wei-Hsuan Hsu
論文名稱: 提高奈米壓印均勻性之模具構造研究
Increasing uniformity in nano-imprint lithography by designing mold structure
指導教授: 賀陳弘
Hong Hocheng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 83
中文關鍵詞: 奈米轉印模具變形溝槽結構
外文關鍵詞: nano-imprint lithography, mold deformation, grooves
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相較於光學微影技術,奈米轉印技術提供了另一個製造奈米等級結構的製造方式。於進行大面積壓印時,壓印結構的完整性容易受壓印力分布的均勻性以及模具與基板表面的品質所影響。因此,如何提高壓印結構的均勻性對奈米壓印技術實用化而言是一重要關鍵。
    為了改善大面積壓印的瓶頸,本論文中提出一個新的製程─控制局部變形之奈米轉印技術。此技術不同於一般奈米轉印技術之處在於基板或模具背面切割200µm~300µm深度的溝槽,利用此結構產生微量變形,使模具與基板更容易貼合進而提升有效轉印之面積,同時使壓印過程中所產生的變形量集中於溝槽結構處,因此具有控制不均勻轉印發生於無圖案區域之能力,進而提升圖樣區域之均勻性。
    本論文中,此概念以有限元素分析以及實際轉印實驗加以證明。模擬結果顯示增加壓印面積或壓印力會導致基板的扭曲進而影響轉印結構的品質,此外,溝槽結構確實能夠改善圖樣(Pattern)區域之基板扭曲情形,對於改善轉印結構品質有實質幫助。另一方面,本研究成功地利用此技術於4吋矽晶圓上成功轉印出50奈米寬、200奈米高之100奈米周期性光柵結構,證明溝槽結構確實有助於提升轉印品質。此技術有效地提升了大面積轉印小於100nm結構的可能性,對於奈米轉印技術跨出實驗室研究階段具有實質的幫助。


    Nano-imprint technique has the advantage of high throughput, sub-10nm resolution and low cost. In the printing process, however, the mold deformation often occurs and causes a great concern of the quality of pattern transfer, such as the uniformity. This paper presents a uniform printing method across the wafer by introducing the local mold deformation along the block boundaries. This method is simple and effective with the grooves cut on the backside within the non-patterned area of mold. The grooves lead the mold to lie and to close fit easily on substrate and obtains more uniform pattern on large surface.
    Both analytical and experimental investigations were conducted to verify the proposed approach. The analytical results reveal that increasing the imprinting force or mold area will cause the substrate distortion and affect the imprinted quality significantly. The grooves can improve the defects and increase the uniform stress distribution in the patterned area. Using the proposed technique to fabricate 50nm grates with the aspect ratio as high as 4 on 4” silicon wafers are successful. The results demonstrate a new imprint method of introducing the controlled local mold deformation for more uniform imprint across large area. This technique enhances the nano-imprint performance in practice.

    CONTENTS IV LIST OF FIGURES VI LIST OF TABLES VIII CHAPTER ONE INTRODUCTION 1 1.1. Background 1 1.2. Motivation 2 1.3. Objective 3 CHAPTER TWO LITETATURE REVIEW 5 2.1. Nano-imprint Technique 5 2.1.1. Thermo Nano-imprint Lithography 5 2.1.2. UV Curing Imprint Lithography 6 2.1.3. Micro-contact Printing Technique 7 2.1.4. Laser-assisted direct imprint technique 7 2.2. Defect and parameter analysis of nano-imprint lithography 8 2.3. Wafer Scale Imprint and Thin Residual Layer Technique 11 CHAPTER THREE PROCESS PRINCIPLE AND NUMERICAL ANALYSIS 19 3.1. Process of Thermal Nano-imprint Lithography 19 3.1.1. Imprinting temperature and polymer layer 19 3.1.2. Effect of uniformity on nano-imprint 20 3.1.3. De-molding and RIE 22 3.1.4. Definition of uniformity in nano-imprint lithography 23 3.2. Anti-sticking Layers and Physics of Adhesion 23 3.2.1. Surface Energy and Adhesion Forces 23 3.2.2. Surface Energy Measurement 24 3.2.3. Adhesion and Anti-sticking Layers 27 3.2.4. Self-Assembled Monolayer Formation 27 3.3. Effects of Back Grooves on Improving Uniformity 29 3.4. Prediction of Contact Behavior 31 CHAPTER FOUR EXPERIMENTAL RESULT AND DISCUSSION 42 4.1. Imprinting Experiment 42 4.1.1. Equipment and Materials 42 4.1.2. Application of Anti-sticking Layer 46 4.2. FEM Simulation Results 50 4.2.1. Distortion and stress distribution of substrate 50 4.2.2. Improvement with grooves 55 4.3. Experimental results 58 4.4. Improvement with back grooves 70 CHAPTER FIVE CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 79 5.1. Conclusions 79 5.2. Suggestions for Future Research 80 References 82

    [1] International Technology Roadmap for Semiconductors:http://public.itrs.net/
    [2] Stephen Y. Chou, Peter R. krauss, Preston, and J. Rmstrom, Imprint of sub-25 nm vias and trenches in polymers, Applied Physics Letters, Vol.67, No. 21, 1995: 3114-3116
    [3] Stepen Y. Chou, Peter R. Krauss, Wei Zhang, Lingjie Guo, and Lei Zhuang, Sub-10 nm imprint lithography and applications, J. Vac. Sci. Technol. B, Vol.15, No.6, 1997: 237-240
    [4] Yoshihiko Hirai, Takaaki Konishi, Tomohiro Kanakugi, Hiroaki Kawata, and Hisao Kikuta, High aspect ratio grating fabrication by imprint lithography, Nanoengineering: Fabrication, Properties, Optics, and Devices, Proceedings of SPIE Vol. 5515, 2004: 187-194
    [5] C Gourgon, C Perret, J Tallal, F Lazzarino, S Landis, and O Joubert, Uniformity across 200mm silicon wafers printed by nanoimprint lithography, J. Phys. D: Appl. Phys, Vol.38, 2004: 70-73
    [6] F. Lazzarino, C. Gourgon, P. Schiavone, and C. Perret, Mold deformation in nanoimprint lithography, J. Vac. Sci. Technol. B, Vol.22, No. 6, 2004: 3318-3322
    [7] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, Nanoimprint lithography, J. Vac. Sci. Technol. B, Vol.14, No. 6,1996: 4129-4113
    [8] Tomi Haatainena, Jouni Ahopeltoa, Gabi Gruetzner', Marion Finkb, and Karl Pfeiffer, Step & stamp imprint lithography using a commercial flip chip bonder, Proceedings of SPIE, Vol. 3997, 2000: 874-880
    [9] A. Carvalho, M. Geissler, H. Schmid, B. Michel, and E. Delamarche, Self-assembled monolayers of eicosanethiol on palladium and their use in microcontact printing, Langmuir, Vol.18, No.6, 2002: 2406-2412
    [10] S. Y. Chou, C. Keimel, and J. Gu, Ultrafast and direct imprint of nanostructure in silicon, NATURE, Vol. 417, 2002: 835-837
    [11] Yoshihiko Hirai, Satoshi Yoshida, and Nobuyuki Takagi, Defect analysis in thermal nanoimprint lithography, J. Vac. Sci. Technol B,Vol.21, No.6, 2003: 2765-2770
    [12]林佳榮,”聚合物熱壓成形之有限元素分析研究”,交通大學博士論文,民國92年6月
    [13] Laurence Ressier, Christel Martin, and Jean Pierre Peyrade, Atomic force microscopy study of micrometric pattern replica by hot embossing lithography, Microelectronic Engineering, Vol. 71, 2004: 272-276
    [14] K. Deguchi, N. Takeuchi, and A. Shimizu, Evaluation of press-uniformity using a pressure sensitive film and calculation of wafer distortions caused by mold press in imprint lithography, Microprocesses and Nanotechnology Conference, 2001: 100-101
    [15] K. Deguchi, T. Nobuyuki, and A. Shimizu, Evaluation of press-uniformity using a pressure sensitive film and calculation of wafer distortions caused by mold press in imprint lithography, Jpn. J. Appl. Phys., Vol. 41, 2002: 4178-4181
    [16] C. Gourgon, C. Perret, G. Micouin, F, Lazzarion, J. H. Tortai, and O. Joubert, Influence of pattern density in nanoimprint lithography, J. Vac. Sci. Technol. B, Vol.21, No.1, 2003: 98-105
    [17] F. Gottschalch, T. Hoffmann, and H.-C. Schulz, Polymer issues in nanoimprinting technique, Solid-State Electronics, Vol. 43, No. 6, 1999: 1079-1083
    [18] L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweizer, Flow behaviour of thin polymer films used for hot embossing lithography, Microelectronic Engineering, Vol.54, 2000: 229-245
    [19] Y. Hirai, Study of the resist deformation in nanoimprint lithography, J. Vac. Sci. Technol. B, Vol.19, No.6, 2001: 2811-2815
    [20] C. C. Nien, H. Hocheng, K. S. Kao, Numerical Analysis for Stress and Strain Distributions of Imprint Mold During Nanoimprinting Process, Proc. 3rd Int Conf on Nanoimprint and Nanoprint Technology, 2004
    [21] Xing Cheng, and L. Jay Guo, A combined-nanoimprint-and-photolithography patterning technique, Microelectronic Engineering, Vol.71, 2004:277-283
    [22] N. Bogdanski, M. Wissen, A. Ziegler, and H.-C. Scheer, Temperature-reduced nanoimprint lithograpgy for thin and uniform residual layers, Microelectronic Engineering, Vol78-79, 2005: 598-604
    [23] C. Perret, C. Gourgon, F. Lazzarino, J. Tallal, S. Landis, and R. Pelzer, Characterization of 8-in. wafers printed by nanoimprint lithography, Microelectronic Engineering, Vol.73-74, 2004: 172-177
    [24]趙啟仲,”軟模氣體熱壓應用於大面積微奈米壓印製程研究”,台灣大學碩士論文,民國93年6月
    [25] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, C. G. Willson, Proceedings of SPIE - The International Society for Optical Engineering, Vol.3676, 1999: 379-389
    [26] D. K. Owens, and R. C. Wendt, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci., Vol.13, No.8, 1969:1741-1747
    [27] P.Silberzan, L. Leger, D. Ausserre, and J. J. Benatter, Silanation of silica surfaces. A new method of constructing pure or mixed monolayers, Langmuir, Vol7, No.8, 1991: 1647-1651
    [28] H. S. Nalwa, Handbook of Thin Film Materials, Volume 5: Nanomaterials and Magnetic Thin Films, 2002
    [29] ANSYS User’s Manual, Revision 10.0

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE