簡易檢索 / 詳目顯示

研究生: 彭德軒
Peng, Te Hsuan
論文名稱: 屏蔽式奈米化技術應用於半導體產業之高強度矽基板
Covered Nanotexturing for High Strength Silicon Substrate Applied in IC Industry
指導教授: 葉哲良
Yeh, Jer Liang
口試委員: 徐文慶
林育芸
羅丞曜
侯帝光
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 84
中文關鍵詞: 應力強化金屬催化濕式蝕刻法微粒空隙
外文關鍵詞: stress enhancement, Metal-Catalyzed Wet-Etching, particle, void
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用濕式蝕刻法搭配奈米銀粒子催化反應(Silver-Nanoparticles-Catalyzed Chemical Reaction Wet-Etching),於一般商品化之4吋單面拋光(100)面之矽晶圓背部,製作具有規律性且相同深度約4微米(μm)深度之表面大尺度奈米垂直線狀結構(Surface Large-Scale Nanowires);本實驗室業已證實奈米垂直線狀結構具有強化基板之應力分散效果,能大幅增加晶圓的力學強度。惟其奈米垂直線狀結構應用於半導體產業之晶圓時,多道光罩之高階製程中的各項微粒會機率性地卡入結構間約100奈米(nm)的空隙(void),造成後續製程的機台污染以及電性不穩的疑慮。故本研究致力於在保有奈米垂直線狀結構間之空隙以分散應力的前提下,沉積不影響矽晶圓本身電性並能兼容於半導體製程之保護層於奈米結構上,最終達成矽晶圓在力學方面之最大破裂強度的3倍強化,並降低在半導體製程中的微粒附著機率、達到屏蔽奈米垂直線狀結構的效果。


    In this study we successfully demonstrate the silver-nanoparticles-catalyzed chemical reaction wet-etching for commercialize, single-side polished, orientation with (100) face, and 4-inch with diameter silicon wafers with regular and around 4 μm uniform depth surface large-scale patterned nanowires. And we already prove that there is the enhancement for the effect of stress distribution in the nanowires region, which means the structure of nanowires is able to enhance the strength for the silicon wafers. However, when we apply the nanowire structure into the silicon wafer for the semiconductor industry, there are chances that several kinds of particles generated from many procedures of semiconductor processes may be stuck in the voids between each nanowire, then resulting in the doubt for contaminations of instruments and instability of electrical performances. In this research, we try to deposit the protection layer which does not affect the electrical properties of silicon wafers and being compatible with the semiconductor processes upon the surface nanowires while the voids between each nanowire still exist to achieve the stress enhancement of the silicon wafers. Furthermore, the protection layer would be able to reduce the possibility for particles being stuck into the voids, achieving the effect of covered nanotexturing for applying to semiconductor industry.

    摘要----------------------------------------------------1 英文摘要------------------------------------------------2 誌謝----------------------------------------------------3 目錄----------------------------------------------------5 表目錄--------------------------------------------------7 圖目錄--------------------------------------------------8 第一章 前言---------------------------------------------10 1.1. 研究背景-------------------------------------------10 1.1.1. 矽晶圓之應力承受----------------------------------11 1.1.2. 半導體製程之良率----------------------------------13 1.1.3. 產業製程之微粒汙染--------------------------------15 1.2. 技術回顧-------------------------------------------18 1.2.1. 矽基材之力學性質及破裂強度-------------------------19 1.2.2. 矽晶圓奈米垂直線狀結構之強度強化-------------------20 1.3. 研究動機與目標-------------------------------------29 第二章 基礎理論-----------------------------------------31 2.1. 保護層材料與基板應力分析----------------------------31 2.1.1. 二氧化矽薄膜應力---------------------------------35 2.1.2. ANSYS模擬之應力分析------------------------------38 2.2. 製程理論-------------------------------------------45 2.2.1. 金屬輔助化學濕式蝕刻之表面奈米結構化----------------45 2.2.2. 化學氣相沉積-------------------------------------49 第三章 實驗規劃-----------------------------------------53 3.1. 製備流程與設計-------------------------------------53 3.2. 奈米銀粒子輔助之濕式蝕刻----------------------------56 第四章 實驗結果與討論------------------------------------58 4.1. 沉積製程與材料篩選----------------------------------58 4.2. 改變結構孔隙之薄膜沉積------------------------------59 4.3. 微粒汙染與應力強度測試------------------------------63 第五章 結論---------------------------------------------68 第六章 未來工作-----------------------------------------69 參考文獻------------------------------------------------70 附錄A. 二氧化矽/矽沉積-----------------------------------76 附錄B. 掃描式電子顯微鏡----------------------------------78 附錄C. 溶膠凝膠法(Sol-gel)------------------------------81

    [1] G. E. Moore, "Cramming more components onto integrated circuits (Reprinted from Electronics, pg 114-117, April 19, 1965)," Proceedings of the Ieee, vol. 86, pp. 82-85, Jan 1998.
    [2] C. F. Chien, W. C. Wang, and J. C. Cheng, "Data mining for yield enhancement in semiconductor manufacturing and an empirical study," Expert Systems with Applications, vol. 33, pp. 192-198, Jul 2007.
    [3] S. P. Cunningham, C. J. Spanos, and K. Voros, "Semiconductor Yield Improvement - Results and Best Practices," Ieee Transactions on Semiconductor Manufacturing, vol. 8, pp. 103-109, May 1995.
    [4] S. C. Hsu and C. F. Chien, "Hybrid data mining approach for pattern extraction from wafer bin map to improve yield in semiconductor manufacturing," International Journal of Production Economics, vol. 107, pp. 88-103, May 2007.
    [5] S. Blanc-Coquand, B. Hinschberger, E. Rouchouze, E. Sicurani, J. Teshima, M. Castagna, M. Weschler, L. Dworkin, and D. Renard, "Using an in-line-defect-analysis tool to provide real-time root-cause knowledge of yield loss," Micro, vol. 22, pp. 77-+, Jun 2004.
    [6] S. M. Hu, "Stress-Related Problems in Silicon Technology," Journal of Applied Physics, vol. 70, pp. R53-R80, Sep 15 1991.
    [7] S. M. Hu, "Temperature Distribution and Stresses in Circular Wafers in a Row during Radiative Cooling," Journal of Applied Physics, vol. 40, pp. 4413-&, 1969.
    [8] D. J. Frank, "Power-constrained CMOS scaling limits," Ibm Journal of Research and Development, vol. 46, pp. 235-244, Mar-May 2002.
    [9] T. S. Oh, H. Jeong, T. H. Seo, Y. S. Lee, A. H. Park, H. Kim, K. J. Lee, and E. K. Suh, "Improved Strain-Free GaN Growth with a Nearly Lattice-Matched AlInN Interlayer by Metalorganic Chemical Vapor Deposition," Japanese Journal of Applied Physics, vol. 49, Nov 2010.
    [10] E. Etzkorn and D. Clarke, "Cracking of GaN films," Journal of Applied Physics, vol. 89, pp. 1025-1034, 2001.
    [11] T. Batten, J. W. Pomeroy, M. J. Uren, T. Martin, and M. Kuball, "Simultaneous measurement of temperature and thermal stress in AlGaN/GaN high electron mobility transistors using Raman scattering spectroscopy," Journal of Applied Physics, vol. 106, Nov 1 2009.
    [12] K. Sakurai, K. Abe, and T. Mizumoto, "Relaxation of Thermal Stress in Direct Bonding by Partitioning the Bonding Area for Fabrication of Optical Isolator with Semiconductor Guiding Layer," Japanese Journal of Applied Physics, vol. 48, Nov 2009.
    [13] S. Karabuk and S. D. Wu, "Incentive schemes for semiconductor capacity allocation: A game theoretic analysis," Production and Operations Management, vol. 14, pp. 175-188, Sum 2005.
    [14] Y. C. Chou, C. T. Cheng, F. C. Yang, and Y. Y. Liang, "Evaluating alternative capacity strategies in semiconductor manufacturing under uncertain demand and price scenarios," International Journal of Production Economics, vol. 105, pp. 591-606, Feb 2007.
    [15] F. Shimura, Semiconductor silicon crystal technology: Academic Press, 1989.
    [16] T. A. Brunner, "Focus and overlay characterization and optimization for photolithographic exposure," ed: Google Patents, 1990.
    [17] 鄒年華, 李政帥, 彭德軒, "瑞晶電子2012年第2季黃光部門總結報告," 瑞晶電子股份有限公司, 2012.
    [18] S. Otsuka, "Semiconductor device and method capable of scribing chips with high yield," ed: Google Patents, 2013.
    [19] H. Weller, "Quantized semiconductor particles: a novel state of matter for materials science," Advanced Materials, vol. 5, pp. 88-95, 1993.
    [20] S. P. Cunningham, C. J. Spanos, and K. Voros, "Semiconductor yield improvement: results and best practices," Semiconductor Manufacturing, IEEE Transactions on, vol. 8, pp. 103-109, 1995.
    [21] G. Hall, "Semiconductor Particle Tracking Detectors," Reports on Progress in Physics, vol. 57, pp. 481-531, May 1994.
    [22] T. Kamo, T. Terasawa, T. Yamane, H. Shigemura, N. Takagi, T. Amano, K. Tawarayama, M. Nozoe, T. Tanaka, O. Suga, and I. Mori, "Evaluation of extreme ultraviolet mask defect using blank inspection, patterned mask inspection, and wafer inspection," Journal of Micro-Nanolithography Mems and Moems, vol. 10, Oct-Dec 2011.
    [23] M. Malloy and L. C. Litt, "Technology review and assessment of nanoimprint lithography for semiconductor and patterned media manufacturing," Journal of Micro-Nanolithography Mems and Moems, vol. 10, Jul-Sep 2011.
    [24] S. W. Bedell, K. Fogel, P. Lauro, D. Shahrjerdi, J. A. Ott, and D. Sadana, "Layer transfer by controlled spalling," Journal of Physics D-Applied Physics, vol. 46, Apr 17 2013.
    [25] S. Schoenfelder, M. Ebert, C. Landesberger, K. Bock, and J. Bagdahn, "Investigations of the influence of dicing techniques on the strength properties of thin silicon," Microelectronics Reliability, vol. 47, pp. 168-178, Feb-Mar 2007.
    [26] J. H. Li, H. Hwang, E. C. Alm, Q. Chen, and P. W. Kim, "Laser dicing and subsequent die strength enhancement technologies for ultra-thin wafer," 57th Electronic Components & Technology Conference, 2007 Proceedings, pp. 761-766, 2007.
    [27] C. N. Chen, C. T. Huang, C. L. Chao, M. T. K. Hou, W. C. Hsu, and J. A. Yeh, "Strengthening for sc-Si Solar Cells by Surface Modification With Nanowires," Journal of Microelectromechanical Systems, vol. 20, pp. 549-551, Jun 2011.
    [28] K. Kashyap, A. Kumar, C.-T. Huang, Y.-Y. Lin, M. T. Hou, and J. Andrew Yeh, "Elimination of strength degrading effects caused by surface microdefect: A prevention achieved by silicon nanotexturing to avoid catastrophic brittle fracture," Sci. Rep., vol. 5, 2015.
    [29] Y. J. A. Kunal K., "The Research of Nanowires on Silicon," Non-published, 2014.
    [30] R. von Mises, "Mechanics of the ductile form changes of crystals," Zeitschrift Fur Angewandte Mathematik Und Mechanik, vol. 8, pp. 161-185, 1928.
    [31] S. Nishino, J. A. Powell, and H. A. Will, "Production of large‐area single‐crystal wafers of cubic SiC for semiconductor devices," Applied Physics Letters, vol. 42, pp. 460-462, 1983.
    [32] W. R. Runyan and K. E. Bean, Semiconductor integrated circuit processing technology: Addison Wesley Publishing Company, 1990.
    [33] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, "Investigations of SiO~ 2/n-GaN and Si~ 3N~ 4/n-GaN insulator-semiconductor interfaces with low interface state density," Applied Physics Letters, vol. 73, pp. 809-811, 1998.
    [34] S. Hu, "Stress‐related problems in silicon technology," Journal of Applied Physics, vol. 70, pp. R53-R80, 1991.
    [35] G. Eda, G. Fanchini, and M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material," Nature nanotechnology, vol. 3, pp. 270-274, 2008.
    [36] R. J. Hamers, "Flexible electronic futures," Nature, vol. 412, pp. 489-490, 2001.
    [37] I. C. Cheng, A. Kattamis, K. Long, J. C. Sturm, and S. Wagner, "Stress control for overlay registration in a-Si : H TFTs on flexible organic-polymer-foil substrates," Journal of the Society for Information Display, vol. 13, pp. 563-568, Jul 2005.
    [38] T. Kitamura, H. Hirakata, and T. Itsuji, "Effect of residual stress on delamination from interface edge between nano-films," Engineering Fracture Mechanics, vol. 70, pp. 2089-2101, 2003.
    [39] G. G. Stoney, "The tension of metallic films deposited by electrolysis," Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, vol. 82, pp. 172-175, May 1909.
    [40] L. B. Freund, J. A. Floro, and E. Chason, "Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations," Applied Physics Letters, vol. 74, pp. 1987-1989, Apr 5 1999.
    [41] Y. Hu and W. Huang, "Elastic and elastic-plastic analysis of multilayer thin films: Closed-form solutions," Journal of Applied Physics, vol. 96, pp. 4154-4160, 2004.
    [42] M. Zhu and P. B. Kirby, "Governing equation for the measurement of nonuniform stress distributions in thin films using a substrate deformation technique," Applied Physics Letters, vol. 88, p. 171903, 2006.
    [43] G. Lucovsky, M. Mantini, J. Srivastava, and E. Irene, "Low‐temperature growth of silicon dioxide films: A study of chemical bonding by ellipsometry and infrared spectroscopy," Journal of Vacuum Science & Technology B, vol. 5, pp. 530-537, 1987.
    [44] J. Fitch, C. Bjorkman, G. Lucovsky, F. Pollak, and X. Yin, "Intrinsic stress and stress gradients at the SiO2/Si interface in structures prepared by thermal oxidation of Si and subjected to rapid thermal annealing," Journal of Vacuum Science & Technology B, vol. 7, pp. 775-781, 1989.
    [45] J. Fitch, G. Lucovsky, E. Kobeda, and E. Irene, "Effects of thermal history on stress‐related properties of very thin films of thermally grown silicon dioxide," Journal of Vacuum Science & Technology B, vol. 7, pp. 153-162, 1989.
    [46] H. Leplan, B. Geenen, J. Robic, and Y. Pauleau, "Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior," Journal of Applied Physics, vol. 78, pp. 962-968, 1995.
    [47] B. Bhushan, S. Murarka, and J. Gerlach, "Stress in silicon dioxide films deposited using chemical vapor deposition techniques and the effect of annealing on these stresses," Journal of Vacuum Science & Technology B, vol. 8, pp. 1068-1074, 1990.
    [48] G. Smolinsky and T. Wendling, "Measurements of temperature dependent stress of silicon oxide films prepared by a variety of CVD methods," Journal of the Electrochemical Society, vol. 132, pp. 950-954, 1985.
    [49] D. N. Wang, J. M. White, K. S. Law, C. Leung, S. P. Umotoy, K. S. Collins, J. A. Adamik, I. Perlov, and D. Maydan, "Thermal CVD/PECVD reactor and use for thermal chemical vapor deposition of silicon dioxide and in-situ multi-step planarized process," ed: Google Patents, 1991.
    [50] M. Ohring, Materials science of thin films: Academic press, 2001.
    [51] J. Hutchinson, "Singular behaviour at the end of a tensile crack in a hardening material," Journal of the Mechanics and Physics of Solids, vol. 16, pp. 13-31, 1968.
    [52] H. R. J. Rice and H. Riedel, "Tensile cracks in creeping solids," West Conshohocken, PA: ASTM STP, vol. 700, pp. 112-130, 1980.
    [53] M. Zhou, Q.-A. Huang, and M. Qin, "Design and simulation of integrated cmos-compatible capacitive absolute pressure-sensing microsystems," in Photonics Asia 2002, 2002, pp. 118-126.
    [54] J. Y. Chyan, W. C. Hsu, and J. A. Yeh, "Broadband antireflective poly-Si nanosponge for thin film solar cells," Optics Express, vol. 17, pp. 4646-4651, Mar 16 2009.
    [55] C. T. Chan and J. A. Yeh, "Powerless tunable photonic crystal with bistable color and millisecond switching," Optics Express, vol. 19, pp. 13707-13713, Jul 4 2011.
    [56] C. T. Chan and J. A. Yeh, "Tunable photonic crystal based on capillary attraction and repulsion," Optics Express, vol. 18, pp. 20894-20899, Sep 27 2010.
    [57] D. S. Y. Hsu and H. F. Gray, "Conformal Chemical Beam Deposition of Thin Metal-Film for Fabricating High-Density Trench Capacitor Cells," Applied Physics Letters, vol. 63, pp. 159-161, Jul 12 1993.
    [58] J. T. Hu, M. Ouyang, P. D. Yang, and C. M. Lieber, "Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires," Nature, vol. 399, pp. 48-51, May 6 1999.
    [59] A. M. Morales and C. M. Lieber, "A laser ablation method for the synthesis of crystalline semiconductor nanowires," Science, vol. 279, pp. 208-211, Jan 9 1998.
    [60] K. W. Schwarz and J. Tersoff, "Multiplicity of Steady Modes of Nanowire Growth," Nano Letters, vol. 12, pp. 1329-1332, Mar 2012.
    [61] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, "Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry," Advanced Materials, vol. 14, pp. 1164-1167, Aug 16 2002.
    [62] K. Q. Peng, Z. P. Huang, and J. Zhu, "Fabrication of large-area silicon nanowire p-n junction diode arrays," Advanced Materials, vol. 16, pp. 73-+, Jan 5 2004.
    [63] K. Q. Peng, Y. Wu, H. Fang, X. Y. Zhong, Y. Xu, and J. Zhu, "Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays," Angewandte Chemie-International Edition, vol. 44, pp. 2737-2742, 2005.
    [64] 羅健修, "位置、尺寸可調控之有序矽單晶奈米線陣列製備及其氧化行為研究," 國立中央大學化學工程與材料工程研究所碩士論文, 2010.
    [65] R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, "A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches," Chemical Vapor Deposition, vol. 9, pp. 73-78, 2003.
    [66] M. J. Hampden‐Smith and T. T. Kodas, "Chemical vapor deposition of metals: Part 1. An overview of CVD processes," Chemical Vapor Deposition, vol. 1, pp. 8-23, 1995.
    [67] J.-H. Park and T. Sudarshan, Chemical vapor deposition vol. 2: ASM international, 2001.
    [68] D. W. Hess and K. F. Jensen, "Microelectronics processing," 1989.
    [69] P. Ho, "Chemical Vapor Deposition for Microelectronics: Principles, Technology and Applications Sherman Arthur (Noyes Publications, 1987)," Mrs Bulletin, vol. 13, pp. 78-78, 1988.
    [70] S. R. Crouch and D. A. Skoog, "Principles of instrumental analysis," Brooks/Cole Cengage Learning: Belmont, CA, vol. 6, pp. 498-542, 2007.
    [71] Y. Imai, "Rapid synthesis of polyimides from nylon-salt-type monomers," in Progress in Polyimide Chemistry I, ed: Springer, 1999, pp. 1-22.
    [72] S. Mimura, H. Naito, Y. Kanemitsu, K. Matsukawa, and H. Inoue, "Optical properties of organic-inorganic hybrid thin films containing polysilane segments prepared from polysilane-methacrylate copolymers," Journal of Organometallic Chemistry, vol. 611, pp. 40-44, Oct 6 2000.
    [73] 彭永福, "以溶膠凝膠法製備 SiO2 薄膜作 TFT 閘極絕緣層材料," 國立中山大學光電工程學系碩士論文, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE