研究生: |
林旻藝 LIN, MIN-YI |
---|---|
論文名稱: |
切換式磁阻馬達驅動風力永磁同步發電機建立之雙極性直流微電網 DEVELOPMENT OF A SWITCHED RELUCTANCE MOTOR DRIVEN WIND PERMANENT-MAGNET SYNCHRONOUS GENERATOR BASED BIPOLAR DC MICROGRID |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: |
陳盛基
Chen, Sheng-Ji 曾萬存 Zeng, Wan-Cun |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 108 |
中文關鍵詞: | 雙極性直流微電網 、風力發電機 、永磁同步發電機 、維也納整流器 、單週期控制 、風渦輪機模擬 、切換式磁阻馬達 、單相三線變頻器 |
外文關鍵詞: | Bipolar DC microgrid, wind generator, permanent-magnet synchronous generator, Vienna rectifier, one-cycle control, wind turbine emulator, switched-reluctance motor, single-phase three-wire inverter |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在開發一以切換式磁阻馬達驅動之風力永磁同步發電機建立之雙極性直流微電網。首先,建構以非對稱橋式轉換器供電之切換式磁阻馬達驅動系統,採用磁滯控制以得強健之電流控制,抵抗反電動勢之影響。接著,再以換相移位與增壓控制,增強其性能。在速度控制方面,量化設計之速度回授控制器輔以簡易之強健控制,獲得良好之速度追控與負載調節特性。為使馬達驅動器經由市電供電,研製一三相維也納切換式整流器,採用單週期控制所得之功率因數矯正之控制性能,由一些實測結果驗證之。本文所使用之開關式磁阻馬達額定電壓較低,故於維也納切換式整流器後接一降壓式轉換器,建立合適電壓可升之馬達驅動系統直流鏈電壓。以一些結果展示所建降壓式轉換器,及市電供電之整體馬達驅動系統之操控特性。
接著,所建切換式磁阻馬達驅動器作為後接風力永磁同步發電機之原動機,所產生之電壓由一後接之維也納整流器轉換,控制建立微電網之直流匯流排電壓。維也納整流器亦採單週期控制以得快速之動態響應,可因應發電機變動之輸出電壓與頻率。無需交流輸入電壓感測及乘法運算。同時,雙極性匯流排之電壓由維也納切換式整流器自然建立之。為模擬水平軸風渦輪機之行為,依特定風渦輪機功率特性設計功率曲線,而最大功率曲線下之最大功率點擷取,經一些量測結果驗證。
最後,藉發電機後接維也納整流器建立之雙極性直流匯流排,建構一單相三線負載變頻器,於微電網至家用之獨立自主操作下,可對家用負載供電。再者,亦可成功執行微電網至電網及電網至微電網操作。經所採比例諧振控制器,獲得良好之弦波電流及電壓命令追控特性。於微電網至電網操作下,微電網可將預設功率經變頻器送回電網。相反地,經電網至微電網操作,電網可供給能量至微電網直流匯流排。為改善電力品質,加入對應奇次諧波電流之比例諧振控制器。
The thesis is emphasized on the development of a switched reluctance motor (SRM) emulator driven wind permanent-magnet synchronous generator (PMSG) based bipolar DC microgrid. First, the asymmetric bridge converter fed SRM drive is established. The hysteresis current-controlled PWM scheme is adopted to yield robust current control against the back-EMF effects. Moreover, the hysteresis current controller is further enhanced by applying the commutation shifting and voltage boosting approaches. As to the speed control, a quantitatively designed speed feedback controller is augmented with a simple robust control scheme to yield good speed tracking and load regulation responses. In order to power the SRM drive by utility grid, a front-end Vienna rectifier is employed. The power factor correction (PFC) performance using the one-cycle control (OCC) is examined experimentally. Since the employed SRM possesses low rated voltage (48V), a DC/DC buck converter is cascaded to the front-end Vienna rectifier to provide suited and adjustable DC-link voltage to the SRM drive. The designed buck converter and the whole utility grid powered SRM drive are evaluated their operation characteristics by measured results.
Then, the established SRM drive is utilized as a prime mover for driving the studied wind SPMSG. The PMSG generated AC voltage is processed through a followed Vienna rectifier. Again, the OCC is also applied for not only its fast dynamics and simplicity to yield good wind PMSG line drawn current, but also its ability to adapt to the fluctuated voltage frequency. No AC input voltage sensing and multiplying process are needed. The bipolar DC microgrid bus voltages are inherently established by the Vienna rectifier. Moreover, to simulate the behavior of a horizontal-axis wind turbine (HAWTs), the power curves according to the power characteristics of a specific wind turbine are designed. The extraction of maximum power points along the maximum power curve is verified by some measured results.
Finally, a single-phase three-wire (1P3W) load inverter is constructed, which is powered by the bipolar DC-bus built-up by the generator followed Vienna rectifier. The 1P3W inverter can power the household loads under M2H autonomous operation. Moreover, the microgrid-to-grid (M2G) and grid-to-microgrid (G2M) operations can also be successfully conducted. Good sinusoidal current and voltage command tracking characteristics are obtained by applying the proportional-resonant (PR) control. Under M2G operation, the inverter can send the preset power from the microgrid back to the grid. Conversely, the G2M operation allows microgrid DC-bus be supported energy from grid. To improve power quality, the independent PR controllers corresponding to odd harmonics of current are added.
[1] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galván, R. C. P. Guisado, M. Á. M. Prats, J. I. León, and N. Moreno-Alfonso, “Power-electronic systems for the grid integration of renewable energy sources: a survey,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1002-1016, June 2006.
[2] M. H. Nehrir, C. Wang, K. Strunz, H. Aki, R. Ramakumar, J. Bing, Z. Miao, and Z. Salameh, “A review of hybrid renewable/alternative energy systems for electric power generation: configurations, control, and applications,” IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 392-403, Oct. 2011.
[3] B. Kroposki, B. Johnson, Y. C. Zhang, V. Gevorgian, P. Denholm, B. Hodge, and B. Hannegan, “Achieving a 100% renewable grid: operating electric power systems with extremely high levels of variable renewable energy,” IEEE Power Energy Mag., vol. 15, no. 2, pp. 61-73, March-April 2017.
[4] A. Blakers, M. Stocks, B. Lu, C. Cheng, and R. Stocks, “Pathway to 100% renewable electricity,” IEEE J. Photovolt., vol. 9, no. 6, pp. 1828-1833, Nov. 2019.
[5] N. Pogaku, M. Prodanovic, and T. C. Green, “Modeling, analysis and testing of autonomous operation of an inverter-based microgrid,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 613-625, March 2007.
[6] F. Katiraei, R. Iravani, N. Hatziargyriou, and A. Dimeas, “Microgrids management,” IEEE Power Energy Mag., vol. 6, no. 3, pp. 54-65, May-June 2008.
[7] D. E. Olivares, A. Mehrizi-San, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jiménez- Estévez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905-1919, July 2014.
[8] M. Farrokhabadi, C. A. Cañizares, J. W. Simpson-Porco, E. Nasr, L. Fan, P. A. Mendoza-Araya, R. Tonkoski, U. Tamrakar, N. Hatziargyriou, D. Lagos, R. W. Wies, M. Paolone, M. Liserre, L. Meegahapola, M. Kabalan, A. H. Hajimiragha, D. Peralta , M. A. Elizondo, K. P. Schneider, F. K. Tuffner, and Jim Reilly, “Microgrid stability definitions, analysis, and examples,” IEEE Trans. Power Syst., vol. 35, no. 1, pp. 13-29, Jan. 2020.
[9] J. P. Barton and D. G. Infield, “Energy storage and its use with intermittent renewable energy,” IEEE Trans. Energy Convers. vol. 19, no. 2, pp. 441-448, June 2004.
[10] A. Khaligh and Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art,” IEEE Trans. Veh. Technol., vol. 59, no. 6, pp. 2806-2814, July 2010.
[11] M. T. Lawder, B. Suthar, P. W. C. Northrop, S. De, C. M. Hoff, O. Leitermann, M. L. Crow, S. Santhanagopalan, and V. R. Subramanian, “Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications,” in Proc. of the IEEE, vol. 102, no. 6, pp. 1014-1030, June 2014.
[12] Q. Yan, B. Zhang, and M. Kezunovic, “Optimized operational cost reduction for an EV charging station integrated with battery energy storage and PV generation,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 2096-2106, March 2019.
[13] X. Liu, P. Wang, and P. C. Loh, “A hybrid AC/DC microgrid and its coordination control,” IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 278-286, June 2011.
[14] F. Nejabatkhah and Y. W. Li, “Overview of power management strategies of hybrid AC/DC microgrid,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7072-7089, Dec. 2015.
[15] Z. Li and M. Shahidehpour, “Small-signal modeling and stability analysis of hybrid AC/DC microgrids,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 2080-2095, March 2019.
[16] H. Kakigano, Y. Miura, and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3066-3075, Dec. 2010.
[17] O. Vestergaard and P. Lundberg, “Maritime link: the first bipolar VSC HVDC with overhead line,” in Proc. of AEIT HVDC International Conference,2019, pp. 1-4.
B. Wind Generator System
[18] H. Polinder, F. F. A. van der Pijl, G. de Vilder, and P. J. Tavner, “Comparison of direct-drive and geared generator concepts for wind turbines,” IEEE Trans. Energy Convers., vol. 21, no. 3, pp. 725-733, Sept. 2006.
[19] Z. Chen, J. M. Guerrero, and F. Blaabjerg, “A review of the state of the art of power electronics for wind turbines,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1859-1875, Aug. 2009.
[20] M. Liserre, R. Cárdenas, M. Molinas, and J. Rodriguez, “Overview of multi-MW wind turbines and wind parks,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1081-1095, April 2011.
[21] F. Blaabjerg and K. Ma, “Future on power electronics for wind turbine systems,” IEEE Trans. Emerg. Sel. Topics in Power Electron., vol. 1, no. 3, pp. 139-152, Sept. 2013.
[22] E. Apostolaki-Iosifidou, R. Mccormack, W. Kempton, P. Mccoy, and D. Ozkan, “Transmission design and analysis for large-scale offshore wind energy development,” IEEE Power Energy Technol. Syst. J., vol. 6, no. 1, pp. 22-31, March 2019.
Doubly-fed Wind Generator:
[23] S. Muller, M. Deicke, and R. W. De Doncker, “Doubly fed induction generator systems for wind turbines,” IEEE Ind. Appl. Mag., vol. 8, no. 3, pp. 26-33, May-June 2002.
[24] Lie Xu and P. Cartwright, “Direct active and reactive power control of DFIG for wind energy generation,” IEEE Trans. Energy Convers., vol. 21, no. 3, pp. 750-758, Sept. 2006.
[25] Y. H. Lei, A. Mullane, G. Lightbody, and R. Yacamini, “Modeling of the wind turbine with a doubly fed induction generator for grid integration studies,” IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 257-264, March 2006.
[26] G. D. Marques and M. F. Iacchetti, “DFIG topologies for DC networks: a review on control and design features,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1299-1316, Feb. 2019.
[27] K. Tan and S. Islam, “Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors,” IEEE Trans. Energy Convers., vol. 19, no. 2, pp. 392-399, June 2004.
[28] M. Chinchilla, S. Arnaltes, and J. C. Burgos, “Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid,” IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 130-135, March 2006.
[29] M. E. Haque, M. Negnevitsky, and K. M. Muttaqi, “A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 331-339, Jan.-Feb. 2010.
[30] S. M. Muyeen, R. Takahashi, T. Murata, and J. Tamura, “A variable speed wind turbine control strategy to meet wind farm grid code requirements,” IEEE Trans. Power Syst. vol. 25, no. 1, pp. 331-340, Feb. 2010.
[31] S. Li, T. A. Haskew, R. P. Swatloski, and W. Gathings, “Optimal and direct-current vector control of direct-driven PMSG wind turbines,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2325-2337, May 2012.
[32] I. Jlassi and A. J. M. Cardoso, “Fault-tolerant back-to-back converter for direct-drive PMSG wind turbines using direct torque and power control techniques,” IEEE Trans. Power Electron., vol. 34, no. 11, pp. 11215-11227, Nov. 2019.
[33] Y. K. Tan and S. K. Panda, “Optimized wind energy harvesting system using resistance emulator and active rectifier for wireless sensor nodes,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 38-50, Jan. 2011.
[34] N. R. Averous, M. Stieneker, S. Kock, C. Andrei, A. Helmedag, R. W. De Doncker, K. Hameyer, G. Jacobs, and A. Monti, “Development of a 4 MW full-size wind-turbine test bench,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 2, pp. 600-609, June 2017.
[35] F. Huerta, R. L. Tello, and M. Prodanovic, “Real-time power-hardware-in-the-loop implementation of variable-speed wind turbines,” IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 1893-1904, March 2017.
[36] R. Azizipanah-Abarghooee, M. Malekpour, T. Dragičević, F. Blaabjerg, and V. Terzija, “A linear inertial response emulation for variable speed wind turbines,” IEEE Trans. Power Syst., vol. 35, no. 2, pp. 1198-1208, March 2020.
C. Switched Reluctance Motor
[37] P. C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649-659, Feb. 2010.
[38] D. Lee, T. H. Pham, and J. Ahn, “Design and operation characteristics of four-two pole high-speed SRM for torque ripple reduction,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3637-3643, Sept. 2013.
[39] J. Ye, B. Bilgin, and A. Emadi, “An offline torque sharing function for torque ripple reduction in switched reluctance motor drives,” IEEE Trans. Energy Convers., vol. 30, no. 2, pp. 726-735, June 2015.
[40] E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, “Opportunities and challenges of switched reluctance motor drives for electric propulsion: a comparative study,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 58-75, March 2017.
[41] T. Husain, A. Elrayyah, Y. Sozer, and I. Husain, “Unified control for switched reluctance motors for wide speed operation,” IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3401-3411, May 2019.
[42] M. Cacciato, A. Consoli, G. Scarcella, and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. IEEE Power Electronics Specialists Conference, 2008, pp. 1235-1241.
[43] N. K. Dankadai, M. A. Elgendy, S. P. McDonald, D. J. Atkinson and G. Atkinson, “Investigation of reliability and complexity of torque control for switched reluctance drives,” in Proc. IEEE Power Electronics and Renewable Energy Conference, 2019, pp. 485-490.
[44] C. A. Ferreira, S. R. Jones, W. S. Heglund, and W. D. Jones, “Detailed design of a 30-kW switched reluctance starter/generator system for a gas turbine engine application,” IEEE Trans. Ind. Appl., vol. 31, no. 3, pp. 553-561, May-June 1995.
[45] B. Fahimi, A Emadi, and R. B. Sepe, “A switched reluctance machine-based starter/ alternator for more electric cars,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 116-124, March 2004.
[46] N. Schofield and S. Long, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 48-56, Jan. 2009.
[47] J. B. Bartolo, M. Degano, J. Espina, and C. Gerada, “Design and initial testing of a high-speed 45-kW switched reluctance drive for aerospace application,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 988-997, Feb. 2017.
[48] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam, and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV: design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, Jan.-Feb. 2000.
[49] I. Boldea, L. N. Tutelea, L. Parsa, and D. Dorrell, “Automotive electric propulsion systems with reduced or no permanent magnets: an overview,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5696-5711, Oct. 2014.
[50] B. Bilgin, B. Howey, A. D. Callegaro, J. Liang, M. Kordic, J. Taylor, and A. Emadi, “Making the case for switched reluctance motors for propulsion applications,” IEEE Trans. Veh. Technol., vol. 69, no. 7, pp. 7172-7186, July 2020.
[51] E. Sulaiman, T. Kosaka, and N. Matsui, “High power density design of 6-Slot–8-Pole hybrid excitation flux switching machine for hybrid electric vehicles,” IEEE Trans. Magn., vol. 47, no. 10, pp. 4453-4456, Oct. 2011.
[52] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, Nov.-Dec. 2012.
[53] A. D. Callegaro, B. Bilgin, and A. Emadi, “Radial force shaping for acoustic noise reduction in switched reluctance machines,” IEEE Trans. Power Electron., vol. 34, no. 10, pp. 9866-9878, Oct. 2019.
[54] H. W. Gao, F. R. Salmasi, and M. Ehsani, “Inductance model-based sensorless control of the switched reluctance motor drive at low speed,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1568-1573, Nov. 2004.
[55] I. Husain and S. A. Hossain, “Modeling, simulation, and control of switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1625-1634, Dec. 2005.
[56] S. Li, S. Zhang, T. G. Habetler and R. G. Harley, “Modeling, design optimization, and applications of switched reluctance machines - a review,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2660-2681, May-June 2019.
Torque Control
[57] I. Husain and M. Ehsani, “Torque ripple minimization in switched reluctance motor drives by PWM current control,” IEEE Trans. Power Electron., vol. 11, no. 1, pp. 83-88, Jan. 1996.
[58] J. Ye, B. Bilgin, and A. Emadi, “An extended-speed low-ripple torque control of switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1457-1470, March 2015.
[59] A. D. Cheok and Y. Fukuda, “A new torque and flux control method for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 17, no. 4, pp. 543-557, July 2002.
[60] M. Kawa, K. Kiyota, J. Furqani, and A. Chiba, “Acoustic noise reduction of a high- efficiency switched reluctance motor for hybrid electric vehicles with novel current waveform,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2519-2528, May-June 2019.
[61] J. Kim, K. Ha, and R. Krishnan, “Single-controllable-switch-based switched reluctance motor drive for low cost, variable-speed applications,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 379-387, Jan. 2012.
[62] V. P. Vujičić, “Minimization of torque ripple and copper losses in switched reluctance drive,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 388-399, Jan. 2012.
[63] H. Li, B. Bilgin, and A. Emadi, “An improved torque sharing function for torque ripple reduction in switched reluctance machines,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1635-1644, Feb. 2019.
[64] A. Hava, V. Blasko, and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” in Proc. IEEE Industry Applications Society Annual Meeting, 1991.
[65] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, Nov.-Dec. 1991.
[66] J. W. Ahn, S. J. Park, and D. H. Lee, “Hybrid excitation of SRM for reduction of vibration and acoustic noise,” IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 374-380, April 2004.
[67] W. Cai and F. Yi, “An integrated multiport power converter with small capacitance requirement for switched reluctance motor drive,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 3016-3026, April 2016.
[68] X. Deng, B. Mecrow, H. Wu, R. Martin, and Y. Gai, “Cost-effective and high-efficiency variable-speed switched reluctance drives with ring-connected winding configuration,” IEEE Trans. Energy Convers., vol. 34, no. 1, pp. 120-129, March 2019.
D. Front-end AC/DC Converter
[69] M. M. Jovanovic and Y. Jang, “State-of-the-art, single-phase, active power-factor-correction techniques for high-power applications - an overview,” IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 701-708, June 2005.
[70] L. Huber, Y. Jang, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, May 2008.
[71] F. Musavi, W. Eberle, and W. G. Dunford, “A high-performance single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1833-1843, July-Aug. 2011.
[72] M. Pahlevaninezhad, P. Das, J. Drobnik, P. K. Jain, and A. Bakhshai, “A ZVS interleaved boost AC/DC converter used in plug-in electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3513-3529, Aug. 2012.
[73] F. Musavi, M. Edington, W. Eberle, and W. G. Dunford, “Evaluation and efficiency comparison of front end AC-DC plug-in hybrid charger topologies,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 413-421, March 2012.
[74] Z. Chen, P. Davari, and H. Wang, “Single-phase bridgeless PFC topology derivation and performance benchmarking,” IEEE Trans. Power Electron., vol. 35, no. 9, pp. 9238-9250, Sept. 2020.
[75] H. C. Mao, C. Y. Lee, D. Boroyevich, and S. Hiti, “Review of high-performance three- phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, Aug. 1997.
[76] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, Oct. 1998.
[77] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems - part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, Jan. 2013.
[78] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems—Part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, Feb. 2014.
[79] R. N. Beres, X. Wang, M. Liserre, F. Blaabjerg, and C. L. Bak, “A review of passive power filters for three-phase grid-connected voltage-source converters,” IEEE Trans. Emerg. Sel. Topics in Power Electron., vol. 4, no. 1, pp. 54-69, March 2016.
[80] J. W. Kolar, H. Ertl, and F. C. Zach, “Design and experimental investigation of a three- phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel integrated power semiconductor module,” in Proc. IEEE Applied Power Electronics Conference. APEC '96, 1996, vol.2, pp. 514-523.
[81] J. W. Kolar and F. C. Zach, “A novel three-phase utility interface minimizing line current harmonics of high-power telecommunications rectifier modules,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 456-467, Aug. 1997.
[82] R. Burgos, R. Lai, Y. Pei, F. Wang, D. Boroyevich, and J. Pou, “Space vector modulator for Vienna-type rectifiers based on the equivalence between two and three-level converters: a carrier-based implementation,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1888-1898, July 2008.
[83] R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang, and D. Zhang, “Average modeling and control design for Vienna-type rectifiers considering the DC-link voltage balance,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2509-2522, Nov. 2009.
[84] T. B. Soeiro and J. W. Kolar, “Analysis of high-efficiency three-phase two- and three-level unidirectional hybrid rectifiers,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3589-3601, Sept. 2013.
[85] J. Lee, K. Lee, and F. Blaabjerg, “Predictive control with discrete space-vector modulation of Vienna rectifier for driving PMSG of wind turbine systems,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 12368-12383, Dec. 2019.
[86] K. M. Smedley and S. Cuk, “One-cycle control of switching converters,” IEEE Trans. Power Electron., vol. 10, no. 6, pp. 625-633, Nov. 1995.
[87] K. M. Smedley and S. Cuk, “Dynamics of one-cycle controlled Cuk converters,” IEEE Trans. Power Electron., vol. 10, no. 6, pp. 634-639, Nov. 1995.
[88] N. Femia, D. Granozio, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimized one-cycle control in photovoltaic grid connected applications,” IEEE Trans. Aerosp. Electron. Syst., vol. 42, no. 3, pp. 954-972, July 2006.
[89] G. D. S. Fischer, C. Rech, and Y. R. de Novaes, “Extensions of leading-edge modulated one-cycle control for totem-pole bridgeless rectifiers,” IEEE Trans. Power Electron., vol. 35, no. 5, pp. 5447-5460, May 2020.
E. Cascaded DC/DC Buck Converter
[90] V. Vorperian, “Simplified analysis of PWM converters using model of PWM switch, Part I. continuous conduction mode,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3, pp. 490-496, May 1990.
[91] G. R. Walker and P. C. Sernia, “Cascaded DC-DC converter connection of photovoltaic modules,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 1130-1139, July 2004.
[92] Y. Qiu, M. Xu, K. Yao, J. Sun, and F. C. Lee, “Multifrequency small-signal model for buck and multiphase buck converters,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1185-1192, Sept. 2006.
[93] X. Yue, X. Wang, and F. Blaabjerg, “Review of small-signal modeling methods including frequency-coupling dynamics of power converters,” IEEE Trans. Power Electron., vol. 34, no. 4, pp. 3313-3328, April 2019.
Interleaved Buck Converter
[94] W. Huang, “A new control for multi-phase buck converter with fast transient response,” in Proc. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2001, vol1.1, pp. 273-279.
[95] H. Mao, L. Yao, C. Wang, and I. Batarseh, “Analysis of inductor current sharing in nonisolated and isolated multiphase DC-DC converters,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3379-3388, Dec. 2007.
[96] I. Lee, S. Cho, and G. Moon, “Interleaved buck converter having low switching losses and improved step-down conversion ratio,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3664-3675, Aug. 2012.
[97] M. Sinha, J. Poon, B. B. Johnson, M. Rodriguez, and S. V. Dhople, “Decentralized interleaving of parallel-connected buck converters,” IEEE Trans. Power Electron., vol. 34, no. 5, pp. 4993-5006, May 2019.
F. Maximum Power Tracking Technique
[98] Q. Wang and L. Chang, “An intelligent maximum power extraction algorithm for inverter- based variable speed wind turbine systems,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1242-1249, Sept. 2004.
[99] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, July 2005.
[100] E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 486-494, April 2006.
[101] S. M. R. Kazmi, H. Goto, H. Guo, and O. Ichinokura, “A novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 29-36, Jan. 2011.
[102] Y. Xia, K. H. Ahmed, and B. W. Williams, “Wind turbine power coefficient analysis of a new maximum power point tracking technique,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1122-1132, March 2013.
[103] A. Sangwongwanich and F. Blaabjerg, “Mitigation of interharmonics in PV systems with maximum power point tracking modification,” IEEE Trans. Power Electron., vol. 34, no. 9, pp. 8279-8282, Sept. 2019.
G. Fault Tolerance
[104] P. RodrÍguez, A. Timbus, R. Teodorescu, M. Liserre and F. Blaabjerg, “Reactive power control for improving wind turbine system behavior under grid faults,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1798-1801, July 2009.
[105] U. Choi, K. Lee, and F. Blaabjerg, “Diagnosis and tolerant strategy of an open-switch fault for T-type three-level inverter systems,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 495-508, Jan.-Feb. 2014.
[106] U. Choi, J. Lee, F. Blaabjerg, and K. Lee, “Open-circuit fault diagnosis and fault-tolerant control for a grid-connected NPC inverter,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7234-7247, Oct. 2016.
H. Load Inverter
[107] J. Morren, S. W. H. de Haan, W. L. Kling, and J. A. Ferreira, “Wind turbines emulating inertia and supporting primary frequency control,” IEEE Trans. Power Syst., vol. 21, no. 1, pp. 433-434, Feb. 2006.
[108] M. Kayikci and J. V. Milanovic, “Dynamic contribution of DFIG-based wind plants to system frequency disturbances,” IEEE Trans. Power Syst., vol. 24, no. 2, pp. 859-867, May 2009.
[109] G. Delille, B. Francois, and G. Malarange, “Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system's inertia,” IEEE Trans. Sustain. Energy, vol. 3, no. 4, pp. 931-939, Oct. 2012.
[110] M. F. M. Arani and E. F. El-Saadany, “Implementing virtual inertia in DFIG-based wind power generation,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1373-1384, May 2013.
[111] J. Fang, H. Li, Y. Tang, and F. Blaabjerg, “On the inertia of future more-electronics power systems,” IEEE Tran. Emerg. Sel. Topics Power Electron., vol. 7, no. 4, pp. 2130-2146, Dec. 2019.
[112] Y. Xue, L. C. Chang, S. B. Kjaer, J. Bordonau, and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, Sept. 2004.
[113] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1292-1306, Sept.-Oct. 2005.
[114] Q. Li and P. Wolfs, “A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1320-1333, May 2008.
[115] R. I. Bojoi, L. R. Limongi, D. Roiu, and A. Tenconi, “Enhanced power quality control strategy for single-phase inverters in distributed generation systems,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 798-806, March 2011.
[116] S. Kouro, J. I. Leon, D. Vinnikov, and L. G. Franquelo, “Grid-connected photovoltaic systems: an overview of recent research and emerging PV converter technology,” IEEE Ind. Electron. Mag., vol. 9, no. 1, pp. 47-61, March 2015.
[117] J. A. P. Lopes, C. L. Moreira, and A. G. Madureira, “Defining control strategies for MicroGrids islanded operation,” IEEE Trans. Power Syst., vol. 21, no. 2, pp. 916-924, May 2006.
[118] N. Pogaku, M. Prodanovic, and T. C. Green, “Modeling, analysis and testing of autonomous operation of an inverter-based microgrid,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 613-625, March 2007.
[119] E. Rodriguez-Diaz, J. C. Vasquez, and J. M. Guerrero, “Intelligent DC homes in future sustainable energy systems: when efficiency and intelligence work together,” IEEE Consum. Electron. Mag., vol. 5, no. 1, pp. 74-80, Jan. 2016.
[120] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1398-1409, Oct. 2006.
[121] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids - a general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, Jan. 2011.
[122] R. H. Lasseter, “Smart distribution: coupled microgrids,” in Proc. of the IEEE, vol. 99, no. 6, pp. 1074-1082, June 2011.
[123] A. Q. Huang, M. L. Crow, G. T. Heydt, J. P. Zheng, and S. J. Dale, “The future renewable electric energy delivery and management (FREEDM) system: the energy internet,” in Proc. of the IEEE, vol. 99, no. 1, pp. 133-148, Jan. 2011.
I. Grid Synchronization
[124] V. Kaura and V. Blasko, “Operation of a phase locked loop system under distorted utility conditions,” IEEE Trans. Ind. Appl., vol. 33, no. 1, pp. 58-63, Jan.-Feb. 1997.
[125] S. K. Chung, “A phase tracking system for three phase utility interface inverters,” IEEE Trans. Power Electron., vol. 15, no. 3, pp. 431-438, May 2000.
[126] P. Rodriguez, J. Pou, J. Bergas, J. I. Candela, R. P. Burgos, and D. Boroyevich, “Decoupled double synchronous reference frame PLL for power converters control,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 584-592, March 2007.
[127] Q. Zhong, P. Nguyen, Z. Ma, and W. Sheng, “Self-synchronized synchronverters: inverters without a dedicated synchronization unit,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 617-630, Feb. 2014.
[128] H. Wu and X. Wang, “Design-oriented transient stability analysis of PLL-synchronized voltage-source converters,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 3573-3589, April 2020.
[129] P. Rodriguez, A. Luna, M. Ciobotaru, R. Teodorescu, and F. Blaabjerg, “Advanced grid synchronization system for power converters under unbalanced and distorted operating conditions,” in Proc. 32nd Annual Conference on IEEE Industrial Electronics, 2006.
[130] M. Ciobotaru, R. Teodorescu, and F. Blaabjerg, “A new single-phase PLL structure based on second order generalized integrator,” in Proc. 37th IEEE Power Electronics Specialists Conference, 2006.
[131] P. Rodríguez, A. Luna, R. S. Muñoz-Aguilar, I. Etxeberria-Otadui, R. Teodorescu, and F. Blaabjerg, “A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 99-112, Jan. 2012.
[132] S. Golestan, J. M. Guerrero, F. Musavi, and J. C. Vasquez, “Single-phase frequency-locked loops: a comprehensive review,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 11791- 11812, Dec. 2019.
[133] M. Liserre, R. Teodorescu, and F. Blaabjerg, “Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotating frame,” IEEE Trans. Power Electron. vol. 21, no. 3, pp. 836-841, May 2006.
[134] A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, and F. Blaabjerg, “Evaluation of current controllers for distributed power generation systems,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 654-664, March 2009.
[135] P. Rodríguez, A. Luna, I. Candela, R. Mujal, R. Teodorescu, and F. Blaabjerg, “Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions,” IEEE Trans. Ind. Electron, vol. 58, no. 1, pp. 127-138, Jan. 2011.
[136] A. Kuperman, “Proportional-resonant current controllers design based on desired transient performance,” IEEE Trans. Power Electron., vol. 30, no. 10, pp. 5341-5345, Oct. 2015.
[137] K. Seifi and M. Moallem, “An adaptive PR controller for synchronizing grid-connected inverters,” IEEE Trans. Ind. Electron., vol. 66, no. 3, pp. 2034-2043, March 2019.