研究生: |
賴盈宏 |
---|---|
論文名稱: |
微氣泡於垂直圓管內浮升之形狀變化研究 |
指導教授: | 李雄略 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
中文關鍵詞: | 曲率 、氣泡形狀 、流場 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於微小氣泡生成的問題以及在微流道中流動的情形,在微機電系統中應用層面相當廣泛,深具發展潛力,且在微尺度的狀況下,使用實驗觀察並不容易,所以數值模擬方法越顯重要性,若兩者能互相印證,則可以更加了解此氣泡所代表的物理行為。
本文的目的是以數值方法研究單一氣泡在圓柱容器中上升時所產生的周圍流場,將流場所引發的曲率反求出氣泡變形的形狀,以及氣泡上升的終端速度。
本研究發現當流場穩定之後,自由液面的壓力差會影響氣泡曲率,不同的曲率得到不同的氣泡半徑,將曲率反求出氣泡形狀,觀察氣泡的變形,可發現變形量很小,且氣泡形狀為上下不對稱且近似橢圓形;由於曲率是二次微分的函數,如果以現有形狀求曲率,會導入過多雜訊與誤差而無法求解,本文提出一個方向,由曲率反求形狀,以解決這問題。
參考文獻
[1] Duineveld, P. C., 1995, “The rise velocity and shape of bubbles in pure water at high Reynolds number,” Journal of Fluid Mech., Vol. 292, pp. 325-332.
[2] Wu, M., Gharib, M., 2002, “Experimental studies on the shape and path of small air bubbles rising in clean water,” Physics of Fluids,Vol. 14, pp. L49-L52.
[3] I, Zun., 1980, “The transverse migration of bubbles influenced by wall in vertical bubbly flow,” Int. J. Multiphase Flow., Vol. 6, pp. 583-588.
[4] Takemura, F., Takagi, S., Magnaudet, J., et al., 2002, “Drag and lift forces on a bubble rising near a vertical wall in a viscous liquid,” J. Fluid Mech.,Vol. 461, pp. 277-300.
[5] Krishna, R., Urseanu, M.I., van Baten, J.M., Ellenberger, 1999, “Wall effects on the rise of single gas bubbles in liquids,” Int. Comm. Heat Mass Transfer, Vol. 26, pp. 781-790.
[6] M. de Tezanos Pinto., M. A. Abraham., R. L. Cerro., 1997, “How do bubbles enter a capillary” Chemical Engineering Science, Vol. 52, No. 11, pp. 1685-1700.
[7] Ortiz-Villafuerte, J., Hassan, Y.A., Schmidl, W. D., 2001, “Rocking motion, trajectory and shape of bubbles rising in small diameter pipes,”Experimental Thermal and Fluid Science, 25, pp. 43-53.
[8] Hirt, C. W., Nichols, B. D., 1981, “Volume of Fluid (VOF) Method for the Dynamics of free Boundaries,” Journal of Computational Physics, Vol. 39, pp. 201-225.
[9] Shirani, E., Ashgriz, N., Mostaghimi, J., 2005,“Interface pressure calculation based on conservation of momentum for front capturing methods” Journal of Computational Physics, Vol. 203, pp. 154-175.
[10] Lee, S. L., and Sheu, S.R., 2001, “A new numerical formulation for incompressible viscous free surface flow without smearing the free surface,”International Journal of Heat and Mass Transfer, 44, pp. 1831-1848.
[11] 張元榕, “微氣泡於垂直方管內上升之研究”,國立清華大學碩士論文,2005
[12] Moore, D. W., 1963, “The Boundary Layer on a Spherical Gas Bubble,” Journal of Fluid Mechanics, Vol. 16, pp. 161-176.
[13] Magnaudet, J.,Rivero, M. and Fabre, J., 1995,“Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow,”Journal of Fluid Mechanics, Vol. 284, pp. 97-135.
[14] Sarpkaya, T., 1996, “Vorticity, free surface and surfactants,” Annual Review of Fluid Mechanics,Vol. 28, pp. 83-128.
[15] Tsai, W. T., and Yue, D. K. P., 1996, “Computation of nonlinear free-surface flows,”Annual Review of Fluid Mechanics,Vol.28, pp. 249-278.
[16] Lee, S. L., 1989, “Weighting function scheme and its application on multidimensional conservation,” International Journal of Heat and Mass Transfer, Vol.32, pp. 2065-2073.
[17] Lee, S. L., and Tzong, R. Y., 1991, “An Enthalpy Formulation for Phase Change Problems,” Int. J. Heat Mass Transfer, Vol.34, pp. 1491-1502.
[18] Lee, S. L., and Tzong, R. Y., 1992, “Artificial pressure for pressure-linked equation,” International Journal of Heat and Mass Transfer, Vol.35, pp. 2705-2716.
[19] Lee, S. L., 1989, “A strongly-implicit solver for two-dimensional elliptic differential equations,” Numerical Heat Transfer,Vol.16, pp. 161-178.
[20] White, Frank M., 1991, “Viscous Fluid Flow”, 2nd ed., McGraw-Hill, New York, pp. 183-184.
[21] 王信雄, “微小氣泡於軸對稱圓管內上升運動之研究”,國立清華大學碩士論文,2006