研究生: |
張博欽 Chang, Po-Chin |
---|---|
論文名稱: |
新式相變化材料開發與改質 Development and Modifications of Novel Phase-change Materials |
指導教授: |
張士欽
Chang, Shih-Chin 金重勳 Chin, Tsung-Shune |
口試委員: |
張士欽
Chang, Shih-Chin 金重勳 Chin, Tsung-Shune 謝宗雍 Hsieh, Tsung-Eong 何永鈞 Her, Yung-Chiun 陳貞光 Chen, Jhewn-Kuang |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 164 |
中文關鍵詞: | 相變化記憶體 、結晶動力學 、多階儲存 、相變化材料 |
外文關鍵詞: | Phase-change memory, Crystallization Kinetics, Multi-level memory, Phase-change materials |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
相變記憶體是先進非揮發性記憶體中重要的一員。本論文探討摻雜異質元素對相變化材料的影響及評估新穎材料在相變化記憶體的應用。從具有優異熱穩定性的三元鎵銻碲合金出發,利用添加矽進行改質,成功開發出具超高熱穩定性的四元相變化材料。結晶行為屬成長控制型的二元鎵銻合金雖有相分離的潛在缺點,但可被用於多階儲存用途。此二元鎵銻合金更進一步利用矽進行改質,發現其仍具有高速操作特性,同時熱穩定性大幅被提升。最後評估具有共晶組成的鍺鋁二元合金以及全固相相轉變的共析鋼用於相變化記憶體的可行性。
第一主題為鎵銻碲三元合金薄膜開發,包含熱性質、結晶構造、結晶動力學等基礎物性研究,並進行記憶體元件的電性測試。鎵銻碲薄膜展現出高度熱穩定性的高結晶溫度(Tx: 253 °C)及高結晶活化能(Ea: 5.8 eV),非晶薄膜更可在201 °C下保存長達10年以上時間。薄膜具有單相結晶結構,結晶化過程具有9 %的體積收縮率。其記憶體元件可以在10奈秒的電壓脈衝進行寫入/擦拭的動作,在優化的操作條件下可循環操作超過109次。
第二主題為矽添加鎵銻碲四元合金薄膜的開發,其中組成為Si29(Ga2TeSb7)71的合金具有非常優異的熱穩定性,結晶溫度達340 °C,10年資料保存溫度為254 °C。利用此組成製成的元件其高阻狀態可承受超過25分鐘的250 °C恆溫加熱。非晶化過程可以在10奈秒完成,唯結晶化過程需要20微秒,此結果與我們利用結晶動力學預測的結果相符。元件可以重複進行寫入/擦寫動作超過106次。化學電子能譜儀分析顯示當矽含量超過10 at.%會形成矽碲鍵結。利用化學電子能譜儀分析的鍵結型式,我們可以較為準確的預測薄膜的結晶溫度以及玻璃轉換溫度。
第三主題為以二元鎵銻合金為基底,利用矽進行改質。Ga19Sb81合金具有合適的熱穩定性,其結晶溫度為228 °C,十年資料保存溫度為156 °C。元件測試結果現顯示Ga19Sb81合金可於10至100奈秒內完成寫入/擦寫的動作。更重要的發現為其具有多階儲存的能力。矽添加後的Ga19Sb81合金熱穩定性依矽含量有著顯著的提升,結晶溫度為236至284 °C,十年資料保存溫度為 171至217 °C。加Si 4 at.%的組成可於40奈秒內完成寫擦動作,而添加9 at.% Si的合金為100奈秒。耐久度測試以組成S9為最佳,目前可達104次。
第四主題探討共晶合金以及共析鋼於相變記憶體的應用。鍺鋁共晶合金可分別於10奈秒及80奈秒完成寫擦動作,耐久度測試達104次。鎳添加共析鋼可於10奈秒完成寫擦,耐久度達105次。其他共晶系合金諸如矽基以及銻基也被提出,這些共晶系合金具有與目前半導體製程相容的利基。共析合金具有全固相相變機制,可以藉此提升元件的可靠度。
Phase-change random access memory (PCRAM) is one of the most important emerging non-volatile memories. The purpose of this dissertation is to study the effect of modification on new phase-change materials for applications in PCRAM. We worked out Ga-Te-Sb and Si-doped Ga-Te-Sb alloys for highly thermal stable PCRAM and Ga-Sb for multi-level storage applications. Meanwhile, Si-doped Ga-Sb alloys are suitable for high-speed operation while retain excellent thermal stability. Eutectic Ge-Al alloy for PCRAM was also evaluated. Finally, solid-state phase transformation based on Fe-C alloy is proposed.
The Ga2TeSb7 films exhibit a high crystallization temperature (Tx: 253 °C), high temperature corresponding to 10-year data retention (T10y: 201 °C) and high activation energy of crystallization (Ea: 5.76 eV) hence providing outstanding thermal stability. X-ray diffraction (XRD) analysis showed that amorphous Ga2TeSb7 crystallizes into single R3m Sb-structure. The density change of Ga2TeSb7 film is 8.9 %, which is smaller than GST (9.5 %). Ga2TeSb7 memory cells demonstrate fast SET/RESET operation within 10 ns and excellent cycling endurance up to 109 cycles.
Si-doped Ga2TeSb7, Si29(Ga2TeSb7)71, showed further improved thermal stability (Tx: 340 °C, T10y: 254 °C, Ea: 5.2 eV). Data retention of Si29(Ga2TeSb7)71 memory cells is beyond 1500 s at 250 °C. The memory cell can be operated using set and reset pulses at 20 μs and 10 ns, respectively, over 106 cycles. X-ray photoelectron spectroscopy (XPS) results showed the formation of Si-Te bonds as Si content is greater than 10 at.%. Based on bonding status revealed by XPS, prediction of glass-transition temperature (Tg) and Tx can thus be more dependable.
Tx, T10y and Ea of Ga19Sb81 thin films are 228 °C, 156 °C and 4.7 eV, respectively. Ga19Sb81 memory cell can be operated within 10-100 ns. Most importantly, it shows multi-level capability (3 bits/cell). Tx, T10y and Ea of Si-doped Ga19Sb81 films (Si at.% : 1~14) are 236-284 °C, 171-217 °C and 5.3-9.1 eV, respectively. The memory cells of Si4(Ga19Sb81)96 film show reversible switching within 40-200 ns and that of Si9(Ga19Sb81)91 film is 100 ns. The endurance for Si4(Ga19Sb81)96 and Si9(Ga19Sb81)91 memory cells are ~103 and 104, respectively. All of our developed materials showed remarkable thermal stability than the benchmark material Ge2Sb2Te5 (Tx: 176 °C, T10y: 93 °C, Ea: 3.1 eV) while having satisfactory operation speed. They have the chance to replace NOR Flash even the DRAM technology.
Ge-Al film with eutectic composition can be set and reset in 10 ns and 80 ns, respectively. Cycling times can be up to 104. Fe-Ni-C film can be set and rest within 10 ns while showing reversible switching over 105. Others such as Si-based and Sb-based films also show potential applications in PCRAM.
[1] Available from: http://en.wikipedia.org/wiki/Z-RAM.
[2] Available from: http://en.wikipedia.org/wiki/T-RAM.
[3] Available from: http://en.wikipedia.org/wiki/Read-only_memory.
[4] H. S. P. Wong, S. Raoux, S. Kim, J. L. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, "Phase Change Memory," Proceedings of the Ieee, vol. 98, pp. 2201-2227, Dec 2010.
[5] M. H. Kryder and C. S. Kim, "After Hard Drives-What Comes Next?," Ieee Transactions on Magnetics, vol. 45, pp. 3406-3413, Oct 2009.
[6] G. I. Meijer, "Materials science. Who wins the nonvolatile memory race?," Science, vol. 319, pp. 1625-1626, Mar 21 2008.
[7] Y. Fujisaki, "Current Status of Nonvolatile Semiconductor Memory Technology," Japanese Journal of Applied Physics, vol. 49, p. 100001, Oct 2010.
[8] D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, "Emerging memories: resistive switching mechanisms and current status," Reports on Progress in Physics, vol. 75, p. 076502, Jul 2012.
[9] Available from: http://en.wikipedia.org/wiki/Flash_memory.
[10] Available from: Toshiba NAND vs. NOR Flash Memory Technology Overview, http://maltiel-consulting.com/NAND_vs_NOR_Flash_Memory_Technology_Overview_Read_Write_Erase_speed_for_SLC_MLC_semiconductor_consulting_expert.pdf, 2006.
[11] D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, "Breaking the Speed Limits of Phase-Change Memory," Science, vol. 336, pp. 1566-1569, Jun 2012.
[12] A. L. Lacaita, D. Ielmini, and D. Mantegazza, "Status and challenges of phase change memory modeling," Solid-State Electronics, vol. 52, pp. 1443-1451, Sep 2008.
[13] C. Youngdon, S. Ickhyun, P. Mu-Hui, C. Hoeju, C. Sanghoan, C. Beakhyoung, K. Jinyoung, O. Younghoon, K. Duckmin, S. Jung, S. Junho, R. Yoohwan, L. Changsoo, K. Min Gu, L. Jaeyun, K. Yongjin, K. Soehee, K. Jaehwan, L. Yong-Jun, W. Qi, C. Sooho, A. Sujin, H. Horii, L. Jaewook, K. Kisung, J. Hansung, L. Kwangjin, L. Yeong-Taek, Y. Jeihwan, and G. Jeong, "A 20nm 1.8V 8Gb PRAM with 40MB/s program bandwidth," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International, 2012, pp. 46-48.
[14] Available from: http://www.itrs.net/Links/2012ITRS/Home2012.htm.
[15] N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, "Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin-films for an optical disk memory," Journal of Applied Physics, vol. 69, pp. 2849-2856, Mar 1991.
[16] D. Lencer, M. Salinga, and M. Wuttig, "Design rules for phase-change materials in data storage applications," Advanced Materials, vol. 23, pp. 2030-2058, May 10 2011.
[17] M. Wuttig and N. Yamada, "Phase-change materials for rewriteable data storage," Nature Materials, vol. 6, pp. 824-832, Nov 2007.
[18] H. Ishiwara, "Ferroelectric Random Access Memories," Journal of Nanoscience and Nanotechnology, vol. 12, pp. 7619-7627, Oct 2012.
[19] Available from: http://www.skysoon.com/newsInfo.asp?ID=51.
[20] Available from: http://www.fujitsu.com/global/services/microelectronics/technical/fram/.
[21] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nature Materials, vol. 6, pp. 833-840, Nov 2007.
[22] A. Sawa, "Resistive switching in transition metal oxides," Materials Today, vol. 11, pp. 28-36, Jun 2008.
[23] Available from: http://techon.nikkeibp.co.jp/article/HONSHI/20090629/172350/fig9.jpg.
[24] Available from: http://techon.nikkeibp.co.jp/article/HONSHI/20080226/148038/.
[25] Ovshinsk.Sr, "Reversible electrical switching phenomena in disordered structures," Physical Review Letters, vol. 21, pp. 1450-1453, 1968.
[26] Available from: http://en.wikipedia.org/wiki/Phase-change_memory.
[27] I. S. Kim, S. L. Cho, D. H. Im, E. H. Cho, D. H. Kim, G. H. Oh, D. H. Ahn, S. O. Park, S. W. Nam, J. T. Moon, C. H. Chung, and Ieee, High Performance PRAM Cell Scalable to sub-20nm technology with below 4F(2) Cell Size, Extendable to DRAM Applications. New York: IEEE, 2010.
[28] S. Lai, Current status of the phase change memory and its future. New York: IEEE, 2003.
[29] Y. S. Shin, "Non-volatile memory technologies for beyond 2010," presented at the 2005 Symposium on VLSI Circuits, Digest of Technical Papers, Tokyo, 2005.
[30] S. J. Hudgens, "The future of phase-change semiconductor memory devices," Journal of Non-Crystalline Solids, vol. 354, pp. 2748-2752, May 2008.
[31] H. E. Kissinger, "Reaction Kinetics in Differential Thermal Analysis," Analytical Chemistry, vol. 29, pp. 1702-1706, 1957.
[32] G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, "Phase change memory technology," Journal of Vacuum Science & Technology B, vol. 28, pp. 223-262, Mar 2010.
[33] Y. Yin and S. Hosaka, "Low-Reset-Current Ring-Confined-Chalcogenide Phase Change Memory," Japanese Journal of Applied Physics, vol. 51, p. 104202, Oct 2012.
[34] J. M. Yoon, D. O. Shin, Y. Yin, H. K. Seo, D. Kim, Y. I. Kim, J. H. Jin, Y. T. Kim, B. S. Bae, S. O. Kim, and J. Y. Lee, "Fabrication of high-density In3Sb1Te2 phase change nanoarray on glass-fabric reinforced flexible substrate," Nanotechnology, vol. 23, p. 255301, Jun 2012.
[35] G. Bai, Z. G. Liu, R. Li, Y. D. Xia, and J. Yin, "Phase change behavior and critical size of Ge2Sb2Te5 nanowires and nanotubes," Physica B-Condensed Matter, vol. 411, pp. 68-71, Feb 2013.
[36] Y. G. Lu, S. N. Song, Z. T. Song, W. C. Ren, Y. L. Xiong, F. Rao, L. C. Wu, Y. Cheng, and B. Liu, "Superlattice-like GaSb/Sb2Te3 films for low-power phase change memory," Scripta Materialia, vol. 66, pp. 702-705, May 2012.
[37] P. Y. Long, H. Tong, and X. S. Miao, "Phonon Properties and Low Thermal Conductivity of Phase Change Material with Superlattice-Like Structure," Applied Physics Express, vol. 5, p. 031201, Mar 2012.
[38] J. Li, B. Q. Luan, and C. Lam, "Resistance Drift in Phase Change Memory," presented at the IEEE International Reliability Physics Symposium (IRPS), Anaheim, CA 2012.
[39] M. Boniardi and D. Ielmini, "Physical origin of the resistance drift exponent in amorphous phase change materials," Applied Physics Letters, vol. 98, p. 243506, Jun 2011.
[40] A. Pirovano, A. L. Lacaita, F. Pellizzer, S. A. Kostylev, A. Benvenuti, and R. Bez, "Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials," Ieee Transactions on Electron Devices, vol. 51, pp. 714-719, May 2004.
[41] A. Gyanathan and Y. C. Yeo, "Phase-Change Random Access Memory With Multilevel Resistances Implemented Using a Dual Phase-Change Material Stack," Ieee Transactions on Electron Devices, vol. 59, pp. 2910-2916, Nov 2012.
[42] P. C. Chang, S. C. Chang, and T. S. Chin, "Crystallization kinetics and x-ray photoelectron spectroscopy of Ga(2)TeSb(7) thin film," Journal of Vacuum Science & Technology B, vol. 29, p. 04D111, Jul 2011.
[43] M. J. Shin, D. J. Choi, M. J. Kang, S. Y. Choi, I. W. Jang, K. N. Lee, and Y. J. Park, "Chemical bonding characteristics of Ge2Sb2Te5 for thin films," Journal of the Korean Physical Society, vol. 44, pp. 10-13, Jan 2004.
[44] B. Rajendran, M. H. Lee, M. Breitwisch, G. W. Burr, Y. H. Shih, R. Cheek, A. Schrott, C. F. Chen, M. Lamorey, E. Joseph, Y. Zhu, R. Dasaka, P. L. Flaitz, F. H. Baumann, H. L. Lung, and C. Lam, "On the dynamic resistance and reliability of phase change memory," presented at the Symposium on VLSI Technology Honolulu, HI 2008.
[45] C. Kim, D. Kang, T. Y. Lee, K. H. P. Kim, Y. S. Kang, J. Lee, S. W. Nam, K. B. Kim, and Y. Khang, "Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices," Applied Physics Letters, vol. 94, p. 193504, May 2009.
[46] B. F. Soares, F. Jonsson, and N. I. Zheludev, "All-optical phase-change memory in a single gallium nanoparticle," Physical Review Letters, vol. 98, p. 153905, Apr 2007.
[47] F. Kreupl, R. Bruchhaus, P. Majewski, J. B. Philipp, R. Symanczyk, T. Happ, C. Arndt, M. Vogt, R. Zimmermann, A. Buerke, A. P. Graham, and M. Kund, "Carbon-Based Resistive Memory," presented at the IEEE International Electron Devices Meeting San Francisco, CA 2008.
[48] A. Sebastian, A. Pauza, C. Rossel, R. M. Shelby, A. F. Rodriguez, H. Pozidis, and E. Eleftheriou, "Resistance switching at the nanometre scale in amorphous carbon," New Journal of Physics, vol. 13, p. 013020, Jan 2011.
[49] L. Sandoval and H. M. Urbassek, "Finite-Size Effects in Fe-Nanowire Solid-Solid Phase Transitions: A Molecular Dynamics Approach," Nano Letters, vol. 9, pp. 2290-2294, Jun 2009.
[50] T. Zhang, Z. T. Song, F. Wang, B. Liu, S. L. Feng, and B. Chen, "Advantages of SiSb phase-change material and its applications in phase-change memory," Applied Physics Letters, vol. 91, p. 222102, Nov 2007.
[51] C. C. Chang, C. T. Chao, J. C. Wu, T. R. Yew, M. J. Tsai, and T. S. Chin, "The use of Ga16Sb84 alloy for electronic phase-change memory," Scripta Materialia, vol. 64, pp. 801-804, May 2011.
[52] M. J. Kang, S. Y. Choi, D. Wamwangi, K. Wang, C. Steimer, and M. Wuttig, "Structural transformation of SbxSe100-x thin films for phase change nonvolatile memory applications," Journal of Applied Physics, vol. 98, p. 014904, Jul 2005.
[53] Y. Sutou, T. Kamada, M. Sumiya, Y. Saito, and J. Koike, "Crystallization process and thermal stability of Ge1Cu2Te3 amorphous thin films for use as phase change materials," Acta Materialia, vol. 60, pp. 872-880, Feb 2012.
[54] Y. F. Gu, S. N. Song, Z. T. Song, Y. Cheng, X. F. Du, B. Liu, and S. L. Feng, "SixSb2Te materials with stable phase for phase change random access memory applications," Journal of Applied Physics, vol. 111, p. 054319, Mar 2012.
[55] Y. Zhang, J. Feng, and B. C. Cai, "Effects of nitrogen doping on the properties of Ge15Sb85 phase-change thin film," Applied Surface Science, vol. 256, pp. 2223-2227, Jan 2010.
[56] Y. G. Lu, S. N. Song, Z. T. Song, L. C. Wu, B. Liu, S. L. Feng, and X. H. Guo, "Study on TiO2-doped Ge2Te3 films for phase-change memory application," Journal of Physics D-Applied Physics, vol. 44, p. 145102, Apr 2011.
[57] S. N. Song, Z. T. Song, L. C. Wu, B. Liu, and S. L. Feng, "Stress reduction and performance improvement of phase change memory cell by using Ge2Sb2Te5-TaOx composite films," Journal of Applied Physics, vol. 109, p. 034503, Feb 2011.
[58] C. Z. Wang, S. M. Li, J. W. Zhai, B. Shen, M. C. Sun, and T. S. Lai, "Rapid crystallization of SiO2/Sb80Te20 nanocomposite multilayer films for phase-change memory applications," Scripta Materialia, vol. 64, pp. 645-648, Apr 2011.
[59] S. W. Ryu, J. H. Oh, J. H. Lee, B. J. Choi, W. Kim, S. K. Hong, C. S. Hwang, and H. J. Kim, "Phase transformation behaviors of SiO(2) doped Ge(2)Sb(2)Te(5) films for application in phase change random access memory," Applied Physics Letters, vol. 92, p. 142110, Apr 2008.
[60] V. Sousa, "Chalcogenide materials and their application to Non-Volatile Memories," Microelectronic Engineering, vol. 88, pp. 807-813, May 2011.
[61] R. Bez and A. Pirovano, "Non-volatile memory technologies: emerging concepts and new materials," Materials Science in Semiconductor Processing, vol. 7, pp. 349-355, Aug-Dec 2004.
[62] C. M. Lee, Y. I. Lin, and T. S. Chin, "Crystallization kinetics of amorphous Ga-Sb-Te films: Part II. Isothermal studies by a time-resolved optical transmission method," Journal of Materials Research, vol. 19, pp. 2938-2946, Oct 2004.
[63] C. M. Lee, Y. L. Lin, and T. S. Chin, "Crystallization kinetics of amorphous Ga-Sb-Te chalcogenide films: Part I. Nonisothermal studies by differential scanning calorimetry," Journal of Materials Research, vol. 19, pp. 2929-2937, Oct 2004.
[64] C. M. Lee, W. S. Yen, J. P. Chen, and T. S. Chin, "Performances of phase-change recording disks based on GaSbTe media," Ieee Transactions on Magnetics, vol. 41, pp. 1022-1024, Feb 2005.
[65] H. Y. Cheng, K. F. Kao, C. M. Lee, and T. S. Chin, "Characteristics of Ga-Sb-Te films for phase-change memory," Ieee Transactions on Magnetics, vol. 43, pp. 927-929, Feb 2007.
[66] H. Y. Cheng, K. F. Kao, C. M. Lee, and T. S. Chin, "Crystallization kinetics of Ga-Sb-Te films for phase change memory," Thin Solid Films, vol. 516, pp. 5513-5517, Jun 30 2008.
[67] K. F. Kao, C. C. Chang, F. T. Chen, M. J. Tsai, and T. S. Chin, "Antimony alloys for phase-change memory with high thermal stability," Scripta Materialia, vol. 63, pp. 855-858, Oct 2010.
[68] K. F. Kao, Y. C. Chu, F. T. Chen, M. J. Tsai, and T. S. Chin, "Phase-Change Memory Devices Operative at 100 degrees C," Ieee Electron Device Letters, vol. 31, pp. 872-874, Aug 2010.
[69] K. F. Kao, Y. C. Chu, M. J. Tsai, and T. S. Chin, "Electrical Characteristics of Ga(3)Te(2)Sb(12) with High Thermal Stability for PRAM," in 3rd IEEE International Nanoelectronics Conference, City Univ Hong Kong, Hong Kong, PEOPLES R CHINA, 2010.
[70] Y. C. Chu, P. C. Chang, K. F. Kao, S. C. Chang, and T. S. Chin, "Thermal properties and structure of TeGa2Sb7 thin films for phase-change memory," Thin Solid Films, vol. 518, pp. 7316-7319, Oct 2010.
[71] J. Feng, Y. Zhang, B. W. Qiao, Y. F. Lai, Y. Y. Lin, B. C. Cai, T. A. Tang, and B. Chen, "Si doping in Ge2Sb2Te5 film to reduce the writing current of phase change memory," Applied Physics a-Materials Science & Processing, vol. 87, pp. 57-62, Apr 2007.
[72] P. H. Lee, P. C. Chang, D. S. Chao, J. H. Liang, S. C. Chang, M. J. Tsai, and T. S. Chin, "Effects of Si-ion implantation on crystallization behavior of Ge2Sb2Te5 film," Thin Solid Films, vol. 520, pp. 6636-6641, Aug 2012.
[73] A. T. H. Chuang, Y. C. Chen, Y. C. Chu, P. C. Chang, K. F. Kao, C. C. Chang, K. Y. Hsieh, T. S. Chin, and C. Y. Lu, "Temperature Robust Phase Change Memory Using Quaternary Material System Based on Ga2TeSb7," in Memory Workshop (IMW), 2011 3rd IEEE International, 2011, pp. 1-3.
[74] M. H. R. Lankhorst, "Modelling glass transition temperatures of chalcogenide glasses. Applied to phase-change optical recording materials," Journal of Non-Crystalline Solids, vol. 297, pp. 210-219, Feb 2002.
[75] S. Raoux, M. Salinga, J. L. Jordan-Sweet, and A. Kellock, "Effect of Al and Cu doping on the crystallization properties of the phase change materials SbTe and GeSb," Journal of Applied Physics, vol. 101, p. 044909, Feb 2007.
[76] Y. Saito, Y. Sutou, and J. Koike, "Effects of Si addition on the crystallization behaviour of GeTe phase change materials," Journal of Physics D-Applied Physics, vol. 45, p. 405302, Oct 2012.
[77] C. C. Chang, C. Y. Hung, K. F. Kao, M. J. Tsai, T. R. Yew, and T. S. Chin, "Phase transformation in Mg-Sb thin films," Thin Solid Films, vol. 518, pp. 7403-7406, Oct 1 2010.
[78] C. C. Chang, C. T. Lin, P. C. Chang, C. T. Chao, J. C. Wu, T. R. Yew, and T. S. Chin, "Phase stability, bonding and electrical conduction of amorphous carbon-added Sb films," Scripta Materialia, vol. 65, pp. 950-953, Dec 2011.
[79] D. Dimitrov, M. A. Ollacarizqueta, C. N. Afonso, and N. Starbov, "Crystallization kinetics of SbxSe100-x thin films," Thin Solid Films, vol. 280, pp. 278-283, Jul 1996.
[80] F. Rao, Z. T. Song, K. Ren, X. L. Li, L. C. Wu, W. Xi, and B. Liu, "Sn12Sb88 material for phase change memory," Applied Physics Letters, vol. 95, p. 032105, Jul 2009.
[81] L. van Pieterson, M. van Schijndel, J. C. N. Rijpers, and M. Kaiser, "Te-free, Sb-based phase-change materials for high-speed rewritable optical recording," Applied Physics Letters, vol. 83, p. 1373, Aug 2003.
[82] P. Zalden, C. Bichara, J. van Eijk, C. Braun, W. Bensch, and M. Wuttig, "Atomic structure of amorphous and crystallized Ge15Sb85," Journal of Applied Physics, vol. 107, pp. 104312-1, May 15 2010.
[83] T. Zhang, Z. T. Song, F. Wang, B. Liu, S. L. Feng, and B. Chen, "Advantages of SiSb phase-change material and its applications in phase-change memory," Applied Physics Letters, vol. 91, pp. 222102-1, Nov 26 2007.
[84] C. C. Chang, K. F. Kao, M. J. Tsai, T. R. Yew, and T. S. Chin, "Crystallization kinetics of amorphous Ga-Sb films extended for phase-change memory," Journal of Nanoscience and Nanotechnology, vol. 11, pp. 10654-8, Dec 2011.
[85] Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, "Stacked chalcogenide layers used as multi-state storage medium for phase change memory," Applied Physics a-Materials Science & Processing, vol. 84, pp. 21-25, Jul 2006.
[86] F. Rao, Z. T. Song, L. C. Wu, Y. F. Gong, S. L. Feng, and B. Chen, "Phase change memory cell based on Sb2Te3/TiN/Ge2Sb2Te5 sandwich-structure," Solid-State Electronics, vol. 53, pp. 276-278, Mar 2009.
[87] A. Gyanathan and Y. C. Yeo, "Multi-level phase change memory devices with Ge2Sb2Te5 layers separated by a thermal insulating Ta2O5 barrier layer," Journal of Applied Physics, vol. 110, p. 124517, Dec 2011.
[88] Y. Saito, Y. H. Song, J. M. Lee, Y. Sutou, and J. Koike, "Multiresistance Characteristics of PCRAM With Ge1Cu2Te3 and Ge2Sb2Te5 Films," Ieee Electron Device Letters, vol. 33, pp. 1399-1401, Oct 2012.
[89] Y. F. Gu, Z. T. Song, T. Zhang, B. Liu, and S. L. Feng, "Novel phase-change material GeSbSe for application of three-level phase-change random access memory," Solid-State Electronics, vol. 54, pp. 443-446, Apr 2010.
[90] Y. Saito, Y. Sutou, and J. Koike, "Crystallization behavior and resistance change in eutectic Si15Te85 amorphous films," Thin Solid Films, vol. 520, pp. 2128-2131, Jan 2012.
[91] H. K. Kim, N. H. Kim, and D. J. Choi, "Investigation of the crystallization process and crystal structure of Si-incorporated GeSb phase-change films," Journal of Materials Science, vol. 47, pp. 6679-6687, Sep 2012.
[92] S. J. Park, I. S. Kim, S. K. Kim, S. M. Yoon, B. G. Yu, and S. Y. Choi, "Phase transition characteristics and device performance of Si-doped Ge(2)Sb(2)Te(5)," Semiconductor Science and Technology, vol. 23, p. 105006, Oct 2008.
[93] F. Oki, Y. Ogawa, and Y. Fujiki, "Effect of deposited metals on crystallization temperature of amorphous germanium film," Japanese Journal of Applied Physics, vol. 8, p. 1056, 1969.
[94] W. Knaepen, C. Detavernier, R. L. Van Meirhaeghe, J. J. Sweet, and C. Lavoie, "In-situ X-ray Diffraction study of Metal Induced Crystallization of amorphous silicon," Thin Solid Films, vol. 516, pp. 4946-4952, Jun 2008.
[95] G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, and M. A. Hasan, "Al induced crystallization of a-Si," Journal of Applied Physics, vol. 69, pp. 6394-6399, May 1991.
[96] Y. C. Her and C. W. Chen, "Crystallization kinetics of ultrathin amorphous Si film induced by Al metal layer under thermal annealing and pulsed laser irradiation," Journal of Applied Physics, vol. 101, p. 043518, Feb 2007.
[97] F. Oki, Y. Ogawa, and Y. Fujiki, "EFFECT OF DEPOSITED METALS ON CRYSTALLIZATION TEMPERATURE OF AMORPHOUS GERMANIUM FILM," Japanese Journal of Applied Physics, vol. 8, pp. 1056-&, 1969.
[98] S. Hu, A. F. Marshall, and P. C. McIntyre, "Interface-controlled layer exchange in metal-induced crystallization of germanium thin films," Applied Physics Letters, vol. 97, p. 082104, Aug 2010.
[99] M. H. Lankhorst, B. W. Ketelaars, and R. A. Wolters, "Low-cost and nanoscale non-volatile memory concept for future silicon chips," Nature Materials, vol. 4, pp. 347-52, Apr 2005.
[100] A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, "Understanding the phase-change mechanism of rewritable optical media," Nature Materials, vol. 3, pp. 703-708, Oct 2004.
[101] X. Q. Liu, X. B. Li, L. Zhang, Y. Q. Cheng, Z. G. Yan, M. Xu, X. D. Han, S. B. Zhang, Z. Zhang, and E. Ma, "New Structural Picture of the Ge2Sb2Te5 Phase-Change Alloy," Physical Review Letters, vol. 106, p. 025501, Jan 2011.
[102] A. V. Kolobov, "Information storage - Around the phase-change cycle," Nature Materials, vol. 7, pp. 351-353, May 2008.
[103] S. Raoux, "Phase Change Materials," in Annual Review of Materials Research. vol. 39, ed Palo Alto: Annual Reviews, 2009, pp. 25-48.
[104] G. Atwood, "Engineering - Phase-change materials for systems. electronic memories," Science, vol. 321, pp. 210-211, Jul 2008.
[105] R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, "Interfacial phase-change memory," Nature Nanotechnology, vol. 6, pp. 501-505, Aug 2011.
[106] W. Welnic and M. Wuttig, "Reversible switching in phase-change materials," Materials Today, vol. 11, pp. 20-27, Jun 2008.
[107] X. Q. Wei, L. P. Shi, T. C. Chong, R. Zhao, and H. K. Lee, "Thickness dependent nano-crystallization in Ge2Sb2Te5 films and its effect on devices," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 46, pp. 2211-2214, Apr 2007.
[108] C. C. Chang, T. R. Yew, and T. S. Chin, "Crystallization behaviors of an ultra-thin Ga-Sb film," Crystengcomm, vol. 13, pp. 5642-5645, 2011.
[109] S. H. Lee, Y. Jung, and R. Agarwal, "Highly scalable non-volatile and ultra-lowpower phase-change nanowire memory," Nature Nanotechnology, vol. 2, pp. 626-630, Oct 2007.
[110] M. Longo, R. Fallica, C. Wiemer, O. Salicio, M. Fanciulli, E. Rotunno, and L. Lazzarini, "Metal Organic Chemical Vapor Deposition of Phase Change Ge1Sb2Te4 Nanowires," Nano Letters, vol. 12, pp. 1509-1515, Mar 2012.
[111] M. Li, "Size-dependent nucleation rate of Ge2Sb2Te5 nanowires in the amorphous phase and crystallization activation energy," Materials Letters, vol. 76, pp. 138-140, Jun 2012.
[112] E. Mafi, A. Soudi, and Y. Gu, "Electronically Driven Amorphization in Phase-Change In2Se3 Nanowires," Journal of Physical Chemistry C, vol. 116, pp. 22539-22544, Oct 2012.
[113] Y. Jung, R. Agarwal, and C. Y. Yang, "Chalcogenide phase-change memory nanotubes for lower writing current operation," Nanotechnology, vol. 22, p. 254012, Jun 2011.
[114] N. Han, S. I. Kim, J. D. Yang, K. Lee, H. Sohn, H. M. So, C. W. Ahn, and K. H. Yoo, "Phase-Change Memory in Bi2Te3 Nanowires," Advanced Materials, vol. 23, p. 1871, Apr 2011.
[115] D. J. Milliron, S. Raoux, R. Shelby, and J. Jordan-Sweet, "Solution-phase deposition and nanopatterning of GeSbSe phase-change materials," Nature Materials, vol. 6, pp. 352-356, May 2007.
[116] S. Raoux, C. T. Rettner, J. L. Jordan-Sweet, A. J. Kellock, T. Topuria, P. M. Rice, and D. C. Miller, "Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials," Journal of Applied Physics, vol. 102, p. 094305, Nov 2007.
[117] J. N. Cha, Y. Zhang, H. S. P. Wong, S. Raoux, C. Rettner, L. Krupp, and V. Deline, "Biomimetic approaches for fabricating high-density nanopatterned arrays," Chemistry of Materials, vol. 19, pp. 839-843, Feb 2007.
[118] Y. Zhang, H. S. P. Wong, S. Raoux, J. N. Cha, C. T. Rettner, L. E. Krupp, T. Topuria, D. J. Milliron, P. M. Rice, and J. L. Jordan-Sweet, "Phase change nanodot arrays fabricated using a self-assembly diblock copolymer approach," Applied Physics Letters, vol. 91, p. 013104, Jul 2007.
[119] D. S. Suh, E. Lee, K. H. P. Kim, J. S. Noh, W. C. Shin, Y. S. Kang, C. Kim, Y. Khang, H. R. Yoon, and W. Jo, "Nonvolatile switching characteristics of laser-ablated Ge2Sb2Te5 nanoparticles for phase-change memory applications," Applied Physics Letters, vol. 90, p. 023101, Jan 2007.
[120] F. Xiong, A. D. Liao, D. Estrada, and E. Pop, "Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes," Science, vol. 332, pp. 568-570, Apr 2011.
[121] J. L. Liang, R. G. D. Jeyasingh, H. Y. Chen, and H. S. P. Wong, "An Ultra-Low Reset Current Cross-Point Phase Change Memory With Carbon Nanotube Electrodes," Ieee Transactions on Electron Devices, vol. 59, pp. 1155-1163, Apr 2012.
[122] M. H. B. Stiddard, "Thin-films of antimony on metallic substrates - crystallite orientation and critical thickness for the occurrence of the amorphous crystalline phase-transition," Journal of Materials Science Letters, vol. 4, pp. 1157-1159, 1985.
[123] A. Hoareau, J. X. Hu, P. Jensen, P. Melinon, M. Treilleux, and B. Cabaud, "Study of the crystallization of antimony thin-films by transmission electron-microscopy observations and electrical measurements," Thin Solid Films, vol. 209, pp. 161-164, Mar 1992.
[124] P. Jensen, P. Melinon, M. Treilleux, A. Hoareau, J. X. Hu, and B. Cabaud, "Continuous amorphous antimony thin-films obtained by low-energy cluster beam deposition," Applied Physics Letters, vol. 59, pp. 1421-1423, Sep 1991.
[125] D. Krebs, S. Raoux, C. T. Rettner, G. W. Burr, M. Salinga, and M. Wuttig, "Threshold field of phase change memory materials measured using phase change bridge devices," Applied Physics Letters, vol. 95, p. 082101, Aug 2009.
[126] S. Raoux, J. L. Jordan-Sweet, and A. J. Kellock, "Crystallization properties of ultrathin phase change films," Journal of Applied Physics, vol. 103, p. 114310, Jun 2008.
[127] H. R. Yoon, W. Jo, E. Cho, S. Yoon, and M. Kim, "Microstructure and optical properties of phase-change Ge-Sb-Te nanoparticles grown by pulsed-laser ablation," Journal of Non-Crystalline Solids, vol. 352, pp. 3757-3761, Oct 2006.
[128] M. A. Caldwell, S. Raoux, R. Y. Wang, H. S. P. Wong, and D. J. Milliron, "Synthesis and size-dependent crystallization of colloidal germanium telluride nanoparticles," Journal of Materials Chemistry, vol. 20, pp. 1285-1291, 2010.
[129] Y. C. Chen, C. T. Rettner, S. Raoux, G. W. Burr, S. H. Chen, R. M. Shelby, M. Salinga, W. P. Risk, T. D. Happ, G. M. McClelland, M. Breitwisch, A. Schrott, J. B. Philipp, M. H. Lee, R. Cheek, T. Nirschl, M. Lamorey, C. F. Chen, E. Joseph, S. Zaidi, B. Yee, H. L. Lung, R. Bergmann, and C. Lam, "Ultra-Thin Phase-Change Bridge Memory Device Using GeSb," in Electron Devices Meeting, 2006. IEDM '06. International, 2006, pp. 1-4.
[130] W. P. Risk, C. T. Rettner, and S. Raoux, "In situ 3 omega techniques for measuring thermal conductivity of phase-change materials," Review of Scientific Instruments, vol. 79, p. 026108, Feb 2008.
[131] J. P. Reifenberg, M. A. Panzer, S. Kim, A. M. Gibby, Y. Zhang, S. Wong, H. S. P. Wong, E. Pop, and K. E. Goodson, "Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films," Applied Physics Letters, vol. 91, p. 111904, Sep 2007.
[132] H. K. Lyeo, D. G. Cahill, B. S. Lee, J. R. Abelson, M. H. Kwon, K. B. Kim, S. G. Bishop, and B. K. Cheong, "Thermal conductivity of phase-change material Ge2Sb2Te5," Applied Physics Letters, vol. 89, p. 151904, Oct 2006.
[133] E. Bozorg-Grayeli, J. P. Reifenberg, M. A. Panzer, J. A. Rowlette, and K. E. Goodson, "Temperature-Dependent Thermal Properties of Phase-Change Memory Electrode Materials," Ieee Electron Device Letters, vol. 32, pp. 1281-1283, Sep 2011.
[134] C. W. Jeong, S. J. Ahn, Y. N. Hwang, Y. J. Song, J. H. Oh, S. Y. Lee, S. H. Lee, K. C. Ryoo, J. H. Park, J. M. Shin, F. Yeung, W. C. Jeong, J. I. Kim, G. H. Koh, G. T. Jeong, H. S. Jeong, and K. Kim, "Highly reliable ring-type contact for high-density phase change memory," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 45, pp. 3233-3237, Apr 2006.
[135] T. D. Happ, M. Breitwisch, A. Schrott, J. B. Philipp, M. H. Lee, R. Cheek, T. Nirschl, M. Lamorey, C. H. Ho, S. H. Chen, C. F. Chen, E. Joseph, S. Zaidi, G. W. Burr, B. Yee, Y. C. Chen, S. Raoux, H. L. Lung, R. Bergmann, and C. Lam, "Novel One-Mask Self-Heating Pillar Phase Change Memory," in VLSI Technology, 2006. Digest of Technical Papers. 2006 Symposium on, 2006, pp. 120-121.
[136] M. Breitwisch, T. Nirschl, C. F. Chen, Y. Zhu, M. H. Lee, M. Lamorey, G. W. Burr, E. Joseph, A. Schrott, J. B. Philipp, R. Cheek, T. D. Happ, S. H. Chen, S. Zaidi, P. Flaitz, J. Bruley, R. Dasaka, B. Rajendran, S. Rossnagel, M. Yang, Y. C. Chen, R. Bergmann, H. L. Lung, C. Lam, I. B. M. Q. M. P. Joint, and P. Japan Soc Appl, Novel lithography-independent pore phase change memory. Tokyo: Japan Society Applied Physics, 2007.
[137] F. Pellizzer, A. Pirovano, F. Ottogalli, M. Magistretti, M. Scaravaggi, P. Zuliani, M. Tosi, A. Benvenuti, P. Besana, S. Cadeo, T. Marangon, R. Morandi, R. Piva, A. Spandre, R. Zonca, A. Modelli, E. Varesi, T. Lowrey, A. Lacaita, G. Casagrande, P. Cappelletti, R. Bez, and ieee, Novel mu trench Phase-Change Memory cell for embedded and stand-alone non-volatile memory applications. New York: Ieee, 2004.
[138] S. Lai and T. Lowrey, "OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications," in Electron Devices Meeting, 2001. IEDM '01. Technical Digest. International, 2001, pp. 36.5.1-36.5.4.
[139] T. Y. Yang, J. Y. Cho, Y. J. Park, and Y. C. Joo, "Influence of dopants on atomic migration and void formation in molten Ge2Sb2Te5 under high-amplitude electrical pulse," Acta Materialia, vol. 60, pp. 2021-2030, Mar 2012.
[140] J. Bae, K. Hwang, K. Park, S. Jeon, D. H. Kang, S. Park, J. Ahn, S. Kim, G. Jeong, and C. Chung, "Microstructural Characterization in Reliability Measurement of Phase Change Random Access Memory," Japanese Journal of Applied Physics, vol. 50, p. 04DD12, Apr 2011.
[141] X. L. Zhou, L. C. Wu, Z. T. Song, F. Rao, M. Zhu, C. Peng, D. N. Yao, S. N. Song, B. Liu, and S. L. Feng, "Carbon-doped Ge2Sb2Te5 phase change material: A candidate for high-density phase change memory application," Applied Physics Letters, vol. 101, p. 142104, Oct 2012.
[142] R. M. Shelby and S. Raoux, "Crystallization dynamics of nitrogen-doped Ge2Sb2Te5," Journal of Applied Physics, vol. 105, p. 104902, May 2009.
[143] S. Privitera, E. Rimini, and R. Zonca, "Amorphous-to-crystal transition of nitrogen- and oxygen-doped Ge2Sb2Te5 films studied by in situ resistance measurements," Applied Physics Letters, vol. 85, pp. 3044-3046, Oct 2004.
[144] Y. J. Huang, M. C. Tsai, C. H. Wang, and T. E. Hsieh, "Characterizations and thermal stability improvement of phase-change memory device containing Ce-doped GeSbTe films," Thin Solid Films, vol. 520, pp. 3692-3696, Feb 2012.
[145] G. X. Wang, Q. H. Nie, X. Shen, R. P. Wang, L. C. Wu, J. Fu, T. F. Xu, and S. X. Dai, "Phase change behaviors of Zn-doped Ge2Sb2Te5 films," Applied Physics Letters, vol. 101, p. 051906, Jul 2012.
[146] S. J. Wei, H. F. Zhu, K. Chen, D. Xu, J. Li, F. X. Gan, X. Zhang, Y. J. Xia, and G. H. Li, "Phase change behavior in titanium-doped Ge2Sb2Te5 films," Applied Physics Letters, vol. 98, p. 231910, Jun 2011.
[147] J. H. Seo, K. H. Song, and H. Y. Lee, "Crystallization behavior of amorphous Al-x(Ge2Sb2Te5)(1-x) thin films," Journal of Applied Physics, vol. 108, p. 064515, Sep 2010.
[148] K. H. Song, S. W. Kim, J. H. Seo, and H. Y. Lee, "Influence of the additive Ag for crystallization of amorphous Ge-Sb-Te thin films," Thin Solid Films, vol. 517, pp. 3958-3962, May 2009.
[149] M. L. Lee, K. T. Yong, C. L. Gan, L. H. Ting, S. B. M. Daud, and L. P. Shi, "Crystallization and thermal stability of Sn-doped Ge2Sb2Te5 phase change material," Journal of Physics D-Applied Physics, vol. 41, p. 215402, Nov 2008.
[150] S. N. Song, Z. T. Song, B. Liu, L. C. Wu, and S. L. Feng, "Performance improvement of phase-change memory cell with Ge2Sb2Te5-HfO2 composite films," Applied Physics a-Materials Science & Processing, vol. 99, pp. 767-770, Jun 2010.
[151] C. F. Chen, A. Schrott, M. H. Lee, S. Raoux, Y. H. Shih, M. Breitwisch, F. H. Baumann, E. K. Lai, T. M. Shaw, P. Flaitz, R. Cheek, E. A. Joseph, S. H. Chen, B. Rajendra, H. L. Lung, and C. Lam, Endurance Improvement of Ge(2)Sb(5)Te(5)-Based Phase Change Memory. New York: IEEE, 2009.
[152] Y. C. Chen, C. T. Chen, J. Y. Yu, C. Y. Lee, C. F. Chen, S. L. Lung, R. Liu, and Ieee, 180nm Sn-doped Ge2Sb2Te5 chalcogenide phase-change memory device for low power, high speed embedded memory for SoC applications. New York: IEEE, 2003.
[153] S. J. Shin, J. Guzman, C. W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, J. W. Ager, D. C. Chrzan, and E. E. Haller, "Embedded Binary Eutectic Alloy Nanostructures: A New Class of Phase Change Materials," Nano Letters, vol. 10, pp. 2794-2798, Aug 2010.
[154] L. van Pieterson, M. H. R. Lankhorst, M. van Schijndel, A. E. T. Kuiper, and J. H. J. Roosen, "Phase-change recording materials with a growth-dominated crystallization mechanism: A materials overview," Journal of Applied Physics, vol. 97, p. 083520, Apr 2005.
[155] K. Ren, F. Rao, Z. T. Song, S. L. Lv, Y. Cheng, L. C. Wu, C. Peng, X. L. Zhou, M. J. Xia, B. Liu, and S. L. Feng, "Pseudobinary Al2Te3-Sb2Te3 material for high speed phase change memory application," Applied Physics Letters, vol. 100, p. 052105, Jan 2012.
[156] J. Shen, C. Xu, B. Liu, Z. T. Song, L. C. Wu, S. L. Feng, and B. Chen, "Reversible resistance switching of GeTi thin film used for non-volatile memory," Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 46, pp. L1-L3, Jan 2007.
[157] J. Shen, B. Liu, Z. T. Song, C. Xu, S. Liang, S. L. Feng, and B. M. Chen, "The microstructure investigation of GeTi thin film used for non-volatile memory," Applied Surface Science, vol. 254, pp. 4638-4643, May 2008.
[158] J. Guzman, C. N. Boswell-Koller, J. W. Beeman, K. C. Bustillo, T. Conry, O. D. Dubon, W. L. Hansen, A. X. Levander, C. Y. Liao, R. R. Lieten, C. A. Sawyer, M. P. Sherburne, S. J. Shin, P. R. Stone, M. Watanabe, K. M. Yu, J. W. Ager, D. C. Chrzan, and E. E. Haller, "Reversible phase changes in Ge-Au nanoparticles," Applied Physics Letters, vol. 98, p. 193101, May 2011.
[159] S. M. Yoon, N. Y. Lee, S. O. Ryu, K. J. Choi, Y. S. Park, S. Y. Lee, B. G. Yu, M. J. Kang, S. Y. Choi, and M. Wuttig, "Sb-Se-based phase-change memory device with lower power and higher speed operations," Ieee Electron Device Letters, vol. 27, pp. 445-447, Jun 2006.
[160] T. Zhang, Z. T. Song, F. Wang, B. Liu, S. L. Feng, and B. Chen, "Te-free SiSb phase change material for high data retention phase change memory application," Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 46, pp. L602-L604, Jul 2007.
[161] Y. G. Lu, S. N. A. Song, Z. T. Song, and B. Liu, "Ga14Sb86 film for ultralong data retention phase-change memory," Journal of Applied Physics, vol. 109, p. 064503, Mar 2011.
[162] Y. F. Gu, T. Zhang, Z. T. Song, Y. B. Liu, B. Liu, and S. L. Feng, "Characterization of the properties for phase-change material GeSb," Applied Physics a-Materials Science & Processing, vol. 99, pp. 205-209, Apr 2010.
[163] C. C. Chang, P. C. Chang, K. F. Kao, T. R. Yew, M. J. Tsai, and T. S. Chin, "C-Sb Materials as Candidate for Phase-Change Memory," Ieee Transactions on Magnetics, vol. 47, pp. 645-648, Mar 2011.
[164] H. Jiang, K. Guo, H. N. Xu, Y. D. Xia, K. Jiang, F. Tang, J. A. Yin, and Z. G. Liu, "Preparation and characterization of GeTe4 thin films as a candidate for phase change memory applications," Journal of Applied Physics, vol. 109, p. 066104, Mar 2011.
[165] C. Peng, L. C. Wu, F. Rao, Z. T. Song, X. L. Zhou, M. Zhu, B. Liu, D. N. Yao, S. L. Feng, P. X. Yang, and J. H. Chu, "Nitrogen incorporated GeTe phase change thin film for high-temperature data retention and low-power application," Scripta Materialia, vol. 65, pp. 327-330, Aug 2011.
[166] G. B. Beneventi, L. Perniola, V. Sousa, E. Gourvest, S. Maitrejean, J. C. Bastien, A. Bastard, B. Hyot, A. Fargeix, C. Jahan, J. F. Nodin, A. Persico, A. Fantini, D. Blachier, A. Toffoli, S. Loubriat, A. Roule, S. Lhostis, H. Feldis, G. Reimbold, T. Billon, B. De Salvo, L. Larcher, P. Pavan, D. Bensahel, P. Mazoyer, R. Annunziata, P. Zuliani, and F. Boulanger, "Carbon-doped GeTe: A promising material for Phase-Change Memories," Solid-State Electronics, vol. 65-66, pp. 197-204, Nov-Dec 2011.
[167] Y. G. Lu, S. N. Song, Z. T. Song, W. C. Ren, C. Peng, Y. Cheng, and B. Liu, "Investigation of HfO2 doping on GeTe for phase change memory," Solid State Sciences, vol. 13, pp. 1943-1947, Nov 2011.
[168] X. L. Zhou, L. C. Wu, Z. T. Song, F. Rao, B. Liu, D. N. Yao, W. J. Yin, J. T. Li, S. L. Feng, and B. M. Chen, "Si2Sb2Te6 Phase Change Material for Low-Power Phase Change Memory Application," Applied Physics Express, vol. 2, p. 091401, Sep 2009.
[169] T. Zhang, Z. T. Song, F. Rao, G. M. Feng, B. Liu, S. L. Feng, and B. M. Chen, "High speed chalcogenide random access memory based on Si2Sb2Te5," Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 46, pp. L247-L249, Mar 2007.
[170] T. Zhang, Z. T. Song, B. Liu, S. L. Feng, and B. M. Chen, "Investigation of phase change Si(2)Sb(2)Te(5)material and its application in chalcogenide random access memory," Solid-State Electronics, vol. 51, pp. 950-954, Jun 2007.
[171] Y. G. Lu, S. N. Song, Z. T. Song, D. N. Yao, W. Xi, W. J. Yin, H. Zheng, and S. L. Feng, "Phase Change Memory Based on (Sb2Te3)(0.85)-(HfO2)(0.15) Composite Film," Applied Physics Express, vol. 3, p. 111201, 2010.
[172] S. N. Song, Z. T. Song, Y. G. Lu, B. Liu, L. C. Wu, and S. L. Feng, "Sb2Te3-Ta2O5 nano-composite films for low-power phase-change memory application," Materials Letters, vol. 64, pp. 2728-2730, Dec 2010.
[173] M. Zhu, L. C. Wu, F. Rao, Z. T. Song, C. Peng, X. L. Li, D. N. Yao, W. Xi, and S. L. Feng, "Phase Change Characteristics of SiO2 Doped Sb2Te3 Materials for Phase Change Memory Application," Electrochemical and Solid State Letters, vol. 14, pp. H404-H407, 2011.
[174] C. Peng, L. C. Wu, Z. T. Song, F. Rao, M. Zhu, X. L. Li, B. Liu, L. M. Cheng, S. L. Feng, P. X. Yang, and J. H. Chu, "Performance improvement of Sb2Te3 phase change material by Al doping," Applied Surface Science, vol. 257, pp. 10667-10670, Oct 2011.
[175] G. X. Wang, Q. H. Nie, X. Shen, R. P. Wang, L. C. Wu, Y. G. Lv, J. Fu, T. F. Xu, and S. X. Dai, "Advantages of Zn1.25Sb2Te3 material for phase change memory," Materials Letters, vol. 87, pp. 135-138, Nov 2012.
[176] M. Zhu, L. C. Wu, F. Rao, Z. T. Song, X. L. Li, C. Peng, X. L. Zhou, K. Ren, D. N. Yao, and S. L. Feng, "N-doped Sb2Te phase change materials for higher data retention," Journal of Alloys and Compounds, vol. 509, pp. 10105-10109, Oct 2011.
[177] Y. G. Lu, S. N. Song, Z. T. Song, F. Rao, L. C. Wu, M. Zhu, B. Liu, and D. N. Yao, "Investigation of CuSb4Te2 alloy for high-speed phase change random access memory applications," Applied Physics Letters, vol. 100, p. 193114, May 2012.
[178] M. Zhu, L. C. Wu, Z. T. Song, F. Rao, D. L. Cai, C. Peng, X. L. Zhou, K. Ren, S. N. Song, B. Liu, and S. L. Feng, "Ti10Sb60Te30 for phase change memory with high-temperature data retention and rapid crystallization speed," Applied Physics Letters, vol. 100, p. 122101, Mar 2012.
[179] C. Peng, L. C. Wu, F. Rao, Z. T. Song, P. X. Yang, H. J. Song, K. Ren, X. L. Zhou, M. Zhu, B. Liu, and J. H. Chu, "W-Sb-Te phase-change material: A candidate for the trade-off between programming speed and data retention," Applied Physics Letters, vol. 101, p. 122108, Sep 2012.
[180] C. Peng, Z. T. Song, F. Rao, L. C. Wu, M. Zhu, H. J. Song, B. Liu, X. L. Zhou, D. N. Yao, P. X. Yang, and J. H. Chu, "Al1.3Sb3Te material for phase change memory application," Applied Physics Letters, vol. 99, p. 043105, Jul 2011.
[181] Y. F. Hu, M. C. Sun, S. N. Song, Z. T. Song, and J. W. Zhai, "Oxygen-doped Sb4Te phase change films for high-temperature data retention and low-power application," Journal of Alloys and Compounds, vol. 551, pp. 551-555, Feb 2013.
[182] K. F. Kao, C. M. Lee, M. J. Chen, M. J. Tsai, and T. S. Chin, "Ga2Te3Sb5-A Candidate for Fast and Ultralong Retention Phase-Change Memory," Advanced Materials, vol. 21, p. 1695, May 2009.
[183] K. F. Kao, Y. C. Chu, M. J. Tsai, and T. S. Chin, "Materials for phase-change memory with elevated temperature stability," Journal of Applied Physics, vol. 111, p. 102808, May 2012.
[184] T. Kamada, Y. Sutou, M. Sumiya, Y. Saito, and J. Koike, "Crystallization and electrical characteristics of Ge1Cu2Te3 films for phase change random access memory," Thin Solid Films, vol. 520, pp. 4389-4393, Apr 2012.
[185] Y. Saito, Y. Sutou, and J. Koike, "Optical contrast and laser-induced phase transition in GeCu2Te3 thin film," Applied Physics Letters, vol. 102, p. 051910, Feb 2013.
[186] M. Avrami, "Kinetics of phase change I - General theory," Journal of Chemical Physics, vol. 7, pp. 1103-1112, Dec 1939.
[187] M. Avrami, "Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei," Journal of Chemical Physics, vol. 8, pp. 212-224, Feb 1940.
[188] M. Avrami, "Granulation, Phase Change, and Microstructure - Kinetics of Phase Change. III," Journal of Chemical Physics, vol. 9, pp. 177-184, Feb 1941.
[189] W. A. Johnson and R. F. Mehl, "Reaction kinetics in processes of nucleation and growth," Transactions of the American Institute of Mining and Metallurgical Engineers, vol. 135, pp. 416-442, 1939.
[190] K. F. Kelton, "Analysis of crystallization kinetics," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 226, pp. 142-150, Jun 1997.
[191] T. Ozawa, "KINETICS OF NON-ISOTHERMAL CRYSTALLIZATION," Polymer, vol. 12, p. 150, 1971.
[192] D. H. Kim, M. S. Kim, R. Y. Kim, K. S. Kim, and H. G. Kim, "Characterization of Ag-x(Ge2Sb2Te5)(1-x) thin film by RF magnetron sputtering," Materials Characterization, vol. 58, pp. 479-484, May 2007.
[193] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy. Eden Prairie: Perkin-Elmer Corporation, 1992.
[194] D. Briggs and M. P. Seah, Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy. Chichester: Wiley & Sons, 1992.
[195] H. Y. Cheng, C. A. Jong, R. J. Chung, T. S. Chin, and R. T. Huang, "Wet etching of Ge2SbTe5 films and switching properties of resultant phase change memory cells," Semiconductor Science and Technology, vol. 20, pp. 1111-1115, Nov 2005.
[196] W. S. Lim, S. J. Cho, and H. Y. Lee, "Change in local atomic and chemical bonding structures of Ge(2)Sb(2)Te(5) alloys by isothermal heat treatment," Thin Solid Films, vol. 516, pp. 6536-6540, Jul 2008.
[197] Y.-C. C. A. T. H Chuang, P.-C. Chang, K.-F. Kao, C.-C Chang, K.-Y Hsieh, T.-S. Chin, and C.-Y Lu, presented at the Memory Workshop (IMW), Monterey, CA, 2011.
[198] N. Ohshima, "Crystallization of germanium-antimony-tellurium amorphous thin film sandwiched between various dielectric protective films," Journal of Applied Physics, vol. 79, pp. 8357-8363, Jun 1996.
[199] A. A. M. Rashid, P. J. Ford, A. J. Miller, and G. A. Saunders, "Field-Dependent Tensor Study of Carrier Transport in Antimony and Its Alloys," Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties, vol. 41, pp. 21-40, 1980.
[200] R. E. Hummel, Electronic Properties of Materials, third ed. New York: Springer, 2005.
[201] S. Kishimoto, T. Hashiguchi, S. Ohshio, and H. Saitoh, "Density Investigation by X-ray Reflectivity for Thin Films Synthesized Using Atmospheric CVD," Chemical Vapor Deposition, vol. 14, pp. 303-308, Sep-Oct 2008.
[202] W. J. Wang, D. Loke, L. P. Shi, R. Zhao, H. X. Yang, L. T. Law, L. T. Ng, K. G. Lim, Y. C. Yeo, T. C. Chong, and A. L. Lacaita, "Enabling Universal Memory by Overcoming the Contradictory Speed and Stability Nature of Phase-Change Materials," Scientific Reports, vol. 2, p. 360, Apr 2012.
[203] A. F. Khan, M. Mehmood, A. M. Rana, and T. Muhammad, "Effect of annealing on structural, optical and electrical properties of nanostructured Ge thin films," Applied Surface Science, vol. 256, pp. 2031-2037, Jan 2010.
[204] K. F. Kao, "Material Explorations for Applications in Phase-change Memory " Ph. D thesis, Department of Materials Science and Engineering, National Tsing Hua University 2010.