研究生: |
林芝因 Lin, Chih-Yin |
---|---|
論文名稱: |
利用可逆加成-斷裂鏈轉移聚合法合成聚乙酸乙烯酯-聚苯乙烯區段共聚高分子 Straightforward Synthesis of Poly(vinyl acetate)-block-polystyrene Copolymers through Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization |
指導教授: |
劉英麟
Liu, Ying-Ling |
口試委員: |
趙基揚
Chao, Chi-Yang 邱昱誠 Chiu, Yu-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 105 |
中文關鍵詞: | 高分子合成 、區段共聚高分子 、電引發聚合 、可逆加成-斷裂鏈轉移聚合法 、聚乙酸乙烯酯-聚苯乙烯 |
外文關鍵詞: | eRAFT, PVAc-b-PS |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
區段共聚高分子已被廣泛運用在許多領域,如奈米科技、奈米光刻、控制藥物傳遞等。而可逆-去活化自由基聚合法為合成區段共聚高分子之方法之一,其中,可逆加成-斷裂鏈轉移聚合法可簡單地藉由依序加入單體之方式,合成出區段共聚高分子,為一具有高度潛力的區段共聚物合成方法。
然而,由於MAM (more-activated monomer)及LAM (less-activated monomer)兩種種類之單體性質差異甚大,而不同種類之單體須以特定之鏈轉移劑進行控制。因此,以可逆加成-斷裂鏈轉移聚合法合成poly(LAM)-block-poly(MAM)區段共聚高分子相對複雜。而欲在良好控制之情況下,合成出含MAM及LAM兩種單體之區段共聚物更為一大挑戰。
許多新穎的合成反應被開發用以解決上述之問題,但是這些設計往往都包含了兩種以上的合成步驟,才得以控制兩種差異極大的單體。相對複雜且困難的操作也帶給這些設計相當大的不便利性。因此,考量實用性及需求性,僅使用單一鏈轉移劑控制合成poly(LAM)-block-poly(MAM)之聚合法有其被開發之必要。
本研究以商用之鏈轉移劑BM1481進行單一鏈轉移劑之可逆加成-斷裂鏈轉移聚合。藉由調控反應物濃度比及反應時間等參數,可成功合成出具良好控制性之poly(LAM)-block-poly(MAM)。另外,為了增加此反應系統在低溫下之應用性,將電致引發之起始劑BrPhN2+引入上述反應系統,取代熱起始劑AIBN。接著,改以電致引發可逆加成-斷裂鏈轉移聚合法合成出區段共聚物,並期望達到與熱致引發系統相同之效果。
在產物性質鑑定中,本研究以傅立葉轉換紅外線光譜儀及核磁共振儀進行高分子化學結構之確認。並以差式掃描量熱儀及熱重分析儀對其進行熱性質分析。另外,也以奈米粒徑量測儀及穿透式電子顯微鏡進行兩性性質的觀察。最後,以凝膠滲透層析儀進行產物分子量及聚合物分散性指數之量測。而可由這些分析數據結果顯示,具良好控制性之區段共聚高分子之成功合成。亦顯示在適當之反應參數下,單一鏈轉移劑之可逆加成-斷裂鏈轉移聚合法可藉由熱致引發及電致引發,控制合成出目標高分子產物。
Block copolymers have been widely applied in various fields, including nanotechnology, nanolithography, controlled drug delivery, etc. Meanwhile, RAFT polymerization, one of the most commonly used RDRP methods, holds high potential in synthesis of block copolymers simply via sequential addition of monomers.
However, due to the opposite properties of two different monomers, there are still challenges in the synthesis of well-controlled poly(LAM)-block-poly(MAM), where LAM and MAM are two categories of monomers represent less activated monomers and more activated monomers respectively. Certain RAFT agents are required in polymerization of different monomers for good control. The limitation of selection of RAFT agents results in the difficulty for a single RAFT agent controlling two different kinds of monomers.
Some polymerization strategies were designed to solve the issue, yet they involved two or more synthetic methods to control the two dissimilar monomers, leading to considerably complex polymerization procedure. Thus, an uncomplicated RAFT polymerization using a universal RAFT agent to produce poly(LAM)-b-poly(MAM) was more attractive.
In the first part of this work, a straightforward synthesis of block copolymers mediated by a commercially available RAFT agent, BM1481, was proposed. Through adjusting the concentration ratio of reactants and reaction conditions, well-defined poly(LAM)-b-poly(MAM) were synthesized. In the second part, aiming to broaden the range of application of this RAFT polymerization system under low temperature, the electrochemically-induced initiator, BrPhN2+, was introduced to replace the thermally-induced one, AIBN.
For the characterization of the products, the chemical structures were confirmed by FTIR and 1H NMR and the thermal properties were analyzed by DSC and TGA. The amphiphilic property was determined by DLS and TEM as well. Most importantly, the molecular weight and low polydispersity values determined by GPC indicated the good controllability the RAFT polymerization system provided. The results of these instrumental analyses implied the successful synthesis of the polymers.
1. Matyjaszewski, K., Introduction to living polymeriz. Living and/or controlled polymerization. Journal of Physical Organic Chemistry, 1995. 8(4), 197-207.
2. Webster, O.W., Living polymerization methods. Science, 1991. 251(4996), 887-893.
3. Odian, G., Principles of Polymerization. 2004, John Wiley & Sons.
4. Keddie, D.J., A Guide to the Synthesis of Block Copolymers Using Reversible-addition Fragmentation Chain Transfer (RAFT) Polymerization. Chemical Society Reviews, 2014. 43(2), 496-505.
5. Rizzardo, E. and D.H. Solomon, On the Origins of Nitroxide Mediated Polymerization (NMP) and Reversible Addition–Fragmentation Chain Transfer (RAFT). Australian Journal of Chemistry, 2012. 65(8).
6. Perrier, S., 50th Anniversary Perspective: RAFT Polymerization—A User Guide. Macromolecules, 2017. 50(19), 7433-7447.
7. Polymeropoulos, G., G. Zapsas, K. Ntetsikas, P. Bilalis, Y. Gnanou, and N. Hadjichristidis, 50th anniversary perspective: polymers with complex architectures. Macromolecules, 2017. 50(4), 1253-1290.
8. Bates, F.S., M.A. Hillmyer, T.P. Lodge, C.M. Bates, K.T. Delaney, and G.H. Fredrickson, Multiblock polymers: panacea or Pandora’s box? Science, 2012. 336(6080), 434-440.
9. Jain, S. and F.S. Bates, On the origins of morphological complexity in block copolymer surfactants. Science, 2003. 300(5618), 460-464.
10. Nishiyama, N., Nanocarriers shape up for long life. Nature nanotechnology, 2007. 2(4), 203-204.
11. Jackson, E.A. and M.A. Hillmyer, Nanoporous membranes derived from block copolymers: from drug delivery to water filtration. ACS nano, 2010. 4(7), 3548-3553.
12. Wang, J., J.P. DeRocher, L. Wu, F.S. Bates, and E. Cussler, Barrier films made with various lamellar block copolymers. Journal of membrane science, 2006. 270(1-2), 13-21.
13. Tang, C., E.M. Lennon, G.H. Fredrickson, E.J. Kramer, and C.J. Hawker, Evolution of block copolymer lithography to highly ordered square arrays. Science, 2008. 322(5900), 429-432.
14. Solomon, D.H., E. Rizzardo, and P. Cacioli, Polymerization Process and Polymers Produced Thereby. 1986, Google Patents.
15. Kato, M., M. Kamigaito, M. Sawamoto, and T. Higashimura, Polymerization of Methyl Methacrylate with the Carbon Tetrachloride / Dichlorotris-(triphenylphosphine) Ruthenium (II) / Methylaluminum Bis (2, 6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization. Macromolecules, 1995. 28(5), 1721-1723.
16. Chiefari, J., Y. Chong, F. Ercole, J. Krstina, J. Jeffery, T.P. Le, R.T. Mayadunne, G.F. Meijs, C.L. Moad, and G. Moad, Living free-radical polymerization by reversible addition− fragmentation chain transfer: the RAFT process. Macromolecules, 1998. 31(16), 5559-5562.
17. Moad, G., E. Rizzardo, and S.H. Thang, Living radical polymerization by the RAFT process. Australian journal of chemistry, 2005. 58(6), 379-410.
18. Lowe, A.B. and C.L. McCormick, Reversible Addition–fragmentation Chain Transfer (RAFT) Radical Polymerization and The Synthesis of Water-soluble (Co)polymers under Homogeneous Conditions in Organic and Aqueous Media. Progress in Polymer Science, 2007. 32(3), 283-351.
19. Matyjaszewski, K., Discovery of the RAFT Process and Its Impact on Radical Polymerization. Macromolecules, 2020. 53(2), 495-497.
20. Otsu, T., Iniferter Concept and Living Radical Polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2000. 38(12), 2121-2136.
21. Wang, Y., M. Fantin, S. Park, E. Gottlieb, L. Fu, and K. Matyjaszewski, Electrochemically Mediated Reversible Addition-Fragmentation Chain-Transfer Polymerization. Macromolecules, 2017. 50(20), 7872-7879.
22. Sang, W., M. Xu, and Q. Yan, Coenzyme-Catalyzed Electro-RAFT Polymerization. ACS Macro Letters, 2017. 6(12), 1337-1341.
23. Lorandi, F., M. Fantin, S. Shanmugam, Y. Wang, A.A. Isse, A. Gennaro, and K. Matyjaszewski, Toward Electrochemically Mediated Reversible Addition–Fragmentation Chain-Transfer (eRAFT) Polymerization: Can Propagating Radicals Be Efficiently Electrogenerated from RAFT Agents? Macromolecules, 2019. 52(4), 1479-1488.
24. Kwak, Y., R. Nicolaÿ, and K. Matyjaszewski, Synergistic Interaction between ATRP and RAFT: Taking the Best of Each World. Australian Journal of Chemistry, 2009. 62(11), 1384-1401.
25. Moad, G. and E. Rizzardo, A 20th Anniversary Perspective on the Life of RAFT (RAFT Coming of Age). Polymer International, 2019. 69(8), 658-661.
26. Hu, Q., J. Kong, D. Han, L. Niu, and X. Zhang, Electrochemical DNA Biosensing via Electrochemically Controlled Reversible Addition-Fragmentation Chain Transfer Polymerization. ACS Sensors, 2019. 4(1), 235-241.
27. Hu, Q., J. Kong, D. Han, Y. Zhang, Y. Bao, X. Zhang, and L. Niu, Electrochemically Controlled RAFT Polymerization for Highly Sensitive Electrochemical Biosensing of Protein Kinase Activity. Analytical Chemistry, 2019. 91(3), 1936-1943.
28. Urbas, A., R. Sharp, Y. Fink, E.L. Thomas, M. Xenidou, and L.J. Fetters, Tunable block copolymer/homopolymer photonic crystals. Advanced Materials, 2000. 12(11), 812-814.
29. Kataoka, K., A. Harada, and Y. Nagasaki, Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced drug delivery reviews, 2001. 47(1), 113-131.
30. Sadeghi, G.M.M. and M. Sayaf, Nanostructure Formation in Block Copolymers, in Nanostructured Polymer Blends. 2014. p. 195-271.
31. Hadjichristidis, N., H. Iatrou, S. Pispas, and M. Pitsikalis, Anionic Polymerization: High Vacuum Techniques. Journal of Polymer Science Part A: Polymer Chemistry, 2000. 38(18), 3211-3234.
32. Hamley, I.W., Developments in Block Copolymer Science and Technology. 2004, John Wiley & Sons.
33. Cannizzo, L.F. and R.H. Grubbs, Block Copolymers Containing Monodisperse Segments Produced by Ring-opening Metathesis of Cyclic Olefins. Macromolecules, 1988. 21(7), 1961-1967.
34. Harrisson, S., X. Liu, J.-N. Ollagnier, O. Coutelier, J.-D. Marty, and M. Destarac, RAFT Polymerization of Vinyl Esters: Synthesis and Applications. Polymers, 2014. 6(5), 1437-1488.
35. Keddie, D.J., G. Moad, E. Rizzardo, and S.H. Thang, RAFT Agent Design and Synthesis. Macromolecules, 2012. 45(13), 5321-5342.
36. Nicolay, R., Y. Kwak, and K. Matyjaszewski, Synthesis of Poly(vinyl acetate) Block Copolymers by Successive RAFT and ATRP with a Bromoxanthate Iniferter. Chemical Communication (Camb), 2008(42), 5336-8.
37. Jeon, H.J. and J.H. Youk, Synthesis of Poly(vinyl acetate)-b-polystyrene and Poly(vinyl alcohol)-b-polystyrene Copolymers by a Combination of Cobalt-Mediated Radical Polymerization and RAFT Polymerization. Macromolecules, 2010. 43(5), 2184-2189.
38. Semsarzadeh, M.A. and S. Amiri, Synthesis and Characterization of PSt-b-PVAc Diblock Copolymers via Combination of Atom Transfer Radical Polymerization and Cobalt-mediated Radical Polymerization. Journal of Polymer Research, 2013. 20(5).
39. Altintas, O., J.C. Speros, F.S. Bates, and M.A. Hillmyer, Straightforward Synthesis of Model Polystyrene-block-poly(vinyl alcohol) Diblock Polymers. Polymer Chemistry, 2018. 9(31), 4243-4250.
40. Mazzotti, G., T. Benelli, M. Lanzi, L. Mazzocchetti, and L. Giorgini, Straightforward Synthesis of Well-defined Poly(vinyl acetate) and Its Block Copolymers by Atom Transfer Radical Polymerization. European Polymer Journal, 2016. 77, 75-87.
41. Matyjaszewski, K., W. Jakubowski, K. Min, W. Tang, J. Huang, W.A. Braunecker, and N.V. Tsarevsky, Diminishing Catalyst Concentration in Atom Transfer Radical Polymerization with Reducing Agents. Proceedings of the National Academy of Sciences, 2006. 103(42), 15309-15314.
42. Dayter, L.A., K.A. Murphy, and D.A. Shipp, RAFT Polymerization of Monomers with Highly Disparate Reactivities: Use of a Single RAFT Agent and the Synthesis of Poly(styrene-block-vinyl acetate). Australian Journal of Chemistry, 2013. 66(12).
43. Wang, M., X. Jiang, Y. Luo, L. Zhang, Z. Cheng, and X. Zhu, Facile Synthesis of Poly(vinyl acetate)-b-polystyrene Copolymers Mediated by an Iniferter Agent Using a Single Methodology. Polymer Chemistry, 2017. 8(38), 5918-5923.
44. Destarac, M., D. Charmot, X. Franck, and S. Zard, Dithiocarbamates as universal reversible addition‐fragmentation chain transfer agents. Macromolecular Rapid Communications, 2000. 21(15), 1035-1039.
45. Hamley, I., Nanostructure fabrication using block copolymers. Nanotechnology, 2003. 14(10), R39.
46. Park, C., J. Yoon, and E.L. Thomas, Enabling nanotechnology with self assembled block copolymer patterns. Polymer, 2003. 44(22), 6725-6760.
47. Glass, R., M. Möller, and J.P. Spatz, Block copolymer micelle nanolithography. Nanotechnology, 2003. 14(10), 1153.
48. Mansky, P., C. Harrison, P. Chaikin, R. Register, and N. Yao, Nanolithographic templates from diblock copolymer thin films. Applied physics letters, 1996. 68(18), 2586-2588.
49. Kazunori, K., Y. Masayuki, O. Teruo, and S. Yasuhisa, Block copolymer micelles as vehicles for drug delivery. Journal of controlled release, 1993. 24(1-3), 119-132.
50. Moad, G., A Critical Survey of Dithiocarbamate Reversible Addition‐Fragmentation Chain Transfer (RAFT) Agents in Radical Polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2018. 57(3), 216-227.
51. Gardiner, J., I. Martinez-Botella, J. Tsanaktsidis, and G. Moad, Dithiocarbamate RAFT Agents with Broad Applicability – the 3,5-dimethyl-1H-pyrazole-1-carbodithioates. Polymer Chemistry, 2016. 7(2), 481-492.
52. Muanchan, P., T. Kurose, and H. Ito, Replication of Mesoscale Pore One-dimensional Nanostructures: Surface-induced Phase Separation of Polystyrene/Poly(vinyl alcohol) (PS/PVA) Blends. Polymers (Basel), 2019. 11(6).
53. Matsumoto, M., M. Takenaka, M. Sawamoto, and T. Terashima, Self-assembly of Amphiphilic Block Pendant Polymers as Microphase Separation Materials and Folded Flower Micelles. Polymer Chemistry, 2019. 10(36), 4954-4961.
54. Hood, J., K. Van Gordon, P. Thomson, B.R. Coleman, F. Burns, and M.G. Moffitt, Structural Hierarchy in Blends of Amphiphilic Block Copolymers Self-assembled at the Air-water Interface. Journal of Colloid Interface Science, 2019. 556, 392-400.
55. Ding, Y., W. Feng, D. Huang, B. Lu, P. Wang, G. Wang, and J. Ji, Compatibilization of Immiscible PLA-based Biodegradable Polymer Blends Using Amphiphilic Di-block Copolymers. European Polymer Journal, 2019. 118, 45-52.
56. Ignaczak, W., P. Sobolewski, and M. El Fray, Bio-Based PBT-DLA Copolyester as an Alternative Compatibilizer of PP/PBT Blends. Polymers (Basel), 2019. 11(9).
57. Park, E.-S., H.-K. Lee, H.-J. Choi, D.-C. Lee, I.-J. Chin, K.-H. Lee, C. Kim, and J.-S. Yoon, Synthesis of Poly (Vinyl Acetate)-graft-polystyrene and Its Compatibilizing Effect on PS/PVAc Blends. European Polymer Journal, 2001. 37(2), 367-373.
58. Menanteau, T., M. Dias, E. Levillain, A.J. Downard, and T. Breton, Electrografting via Diazonium Chemistry: The Key Role of the Aryl Substituent in the Layer Growth Mechanism. The Journal of Physical Chemistry C, 2016. 120(8), 4423-4429.
59. Orqusha, N., S. Phal, A. Berisha, and S. Tesfalidet, Experimental and Theoretical Study of the Covalent Grafting of Triazole Layer onto the Gold Surface. Materials (Basel), 2020. 13(13).
60. Mishra, A.K., C. Choi, S. Maiti, Y. Seo, K.S. Lee, E. Kim, and J.K. Kim, Sequential Synthesis of Well-defined Poly(vinyl acetate)-block-polystyrene and Poly(vinyl alcohol)-block-polystyrene Copolymers Using Difunctional Chloroamide-xanthate Iniferter. Polymer, 2018. 139, 68-75.
61. Matsas, G., A. Faliagas, and J. Simitzis, Removal of polymerization inhibitors from styrene based on adsorption. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics, 1995. 227(1), 35-42.
62. Mishra, A.K., N.K. Vishwakarma, V.K. Patel, C.S. Biswas, T.K. Paira, T.K. Mandal, P. Maiti, and B. Ray, Synthesis, characterization, and solution behavior of well-defined double hydrophilic linear amphiphilic poly (N-isopropylacrylamide)-b-poly (ε-caprolactone)-b-poly (N-isopropylacrylamide) triblock copolymers. Colloid and Polymer Science, 2014. 292(6), 1405-1418.
63. Ramesh, K., A.K. Mishra, V.K. Patel, N.K. Vishwakarma, C.S. Biswas, T.K. Paira, T.K. Mandal, P. Maiti, N. Misra, and B. Ray, Synthesis of well-defined amphiphilic poly (D, L-lactide)-b-poly (N-vinylpyrrolidone) block copolymers using ROP and xanthate-mediated RAFT polymerization. Polymer, 2012. 53(25), 5743-5753.
64. Pinson, J., Attachment of Organic Layers to Materials Surfaces by Reduction of Diazonium Salts. Aryl Diazonium Salts, 2012, 1-35.
65. Uemura, T., T. Kaseda, Y. Sasaki, M. Inukai, T. Toriyama, A. Takahara, H. Jinnai, and S. Kitagawa, Mixing of immiscible polymers using nanoporous coordination templates. Nature communications, 2015. 6(1), 1-8.