簡易檢索 / 詳目顯示

研究生: 陳宗廷
Chen,Chung Ting
論文名稱: 單原子層二硒化鉬之成長及分析
Synthesis and characterizations of MoSe2 monolayer
指導教授: 李奕賢
Lee,Yi Hsien
口試委員: 吳振名
Wu,Jenn Ming
林伯彥
Lin,Po Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 65
中文關鍵詞: 二硒化鉬化學氣相沉積法
外文關鍵詞: MoSe2, chemical vapor deposition (CVD) method
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二硒化鉬為TMD二維材料家族成員之一,其單層結構達奈米尺度,具有獨特的光、電性質。本研究成功利用常壓化學氣相沉積法合成二硒化鉬在二氧化矽/矽與三氧化二鋁基板上,並利用拉曼光譜及光致發光光譜鑑定生長之二硒化鉬品質;在光致發光光譜檢測中顯示,單層的二硒化鉬與數層的比較之下,,具有較高的發光強度且顯示能隙約1.56 eV 。根據調控不同生長參數的實驗結果,討論可能影響製程的因素,提供合成二硒化鉬的原則。此外,本研究將單層二硒化鉬製作成下閘極式場效電晶體,其中二硒化鉬在常溫下的載子遷移率可達0.9 cm2 V−1 s−1;將此元件作光偵測測試,二硒化鉬擁有良好的光響應,約為43.21 mA/W(使用功率為2.47×〖10〗^(-4) W的633 nm紅光雷射,在閘極電壓為-5 V時進行量測),從此研究結果顯示出二硒化鉬在光偵測器的應用上,是具有潛力的材料之一。


    Single-layer molybdenum diselenide(MoSe2), a two-dimension material which possesses unique optical, electrical property of transition dichalcogenides in their layered form, and a dimension with nano-scale level. In this work, high crystalline MoSe2 monolayered atomic layers on SiO2/Si and sapphire substrates have been successfully synthesized by the chemical vapor deposition (CVD) method at atmospheric pressure. Raman spectroscopy reveals that the as-grown ultrathin MoSe2 layers change from single layer to few layers. Photoluminescence (PL) spectroscopy demonstrates that while the multi-layers MoSe2 show weak emission peak, the monolayer has a much stronger emission peak at ~1.56 eV. Our results provide some general guidelines for MoSe2 monolayer synthesis. In addition, we report on the fabrication and optoelectronic properties of phototransistors based on monolayered MoSe2 back-gated field-effect transistors, with a mobility of 0.9 cm2 V−1 s−1 at room temperature. The devices exhibit a good photoresponsivity of 43.21 mA/W (using a 633 nm laser at a laser power of 2.47×〖10〗^(-4) W and a gate bias of -5 V)suggesting that MoSe2 monolayer is a promising material for photodetection applications.

    摘要 I 目錄 IV 圖目錄 VI 表目錄 X 第一章 研究動機 1 第二章 文獻回顧 3 2.1 TMD材料之發展及特性 3 2.1.1 TMD之組成與電子結構 3 2.1.2 TMD場效電晶體(FET)特性 4 2.2 原子層材料之合成 6 2.2.1 機械剝離法 6 2.2.2 化學氣相沉積法(CVD) 6 2.3 材料檢測方式 7 2.3.1 光學顯微鏡(Optical microscope, OM) 7 2.3.2 掃描式原子探測顯微鏡(Atomic force microscope, AFM) 7 2.3.3 拉曼光譜分析(Raman) 8 2.3.4 光致螢光光譜分析(Photoluminescence, PL) 8 2.4化學氣相沉積法合成二硒化鉬原子層 9 2.5 光偵測(Photodetection)之量測及應用 9 第三章 實驗步驟及研究方法 23 3.1 實驗步驟 23 3.1.1 試片處理 23 3.1.2 化學氣相沉積製程 24 3.1.3 元件製作 24 3.2 材料分析與量測 25 3.2.1 光學顯微鏡 25 3.2.2 拉曼光譜分析 25 3.2.3 光致螢光光譜分析 26 3.2.4 電性量測 26 3.2.5 光偵測性質量測 27 第四章 化學氣相沉積法合成二硒化鉬 31 4.1製程參數對於二硒化鉬成長之影響 31 4.1.1 製程最佳化 31 4.1.2 晶種濃度對二維材料生長的影響 32 4.1.3 反應氣體比例/流速與硒蒸氣進入系統時間的影響 33 4.1.4基板種類對於生長的影響 37 4.1.5 總結 38 第五章 單層二硒化鉬之光電特性及光偵測 49 5.1 二硒化鉬場效電晶體之電性量測 49 5.2二硒化鉬場效電晶體之光感測分析 49 第六章 結論與未來展望 60 參考文獻 62

    [1] Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).
    [2] Mattheis, L. F. Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8, 3719–3740 (1973).
    [3] Lee, Y-H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).
    [4] Ling, X.; Lee, Y. H.; Lin, Y. X.; Fang, W. J.; Yu, L. L.; Dresselhaus, M.; Kong, J.Role of the Seeding Promoter in MoS2 Growth by Chemical Vapor Deposition Nano Lett. 14, 464– 472(2014).
    [5] Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425(2013).
    [6] K. S. Novoselov , A. K. Geim , S. V. Morozov , D. Jiang , Y. Zhang ,S. V. Dubonos , I. V. Grigorieva , A. A. Firsov , Electric field effect in atomically thin carbon fi lms. Science 306, 666–669 (2004).
    [7] Yoffe, A. D.Advances in Physics Low-Dimensional Systems: Quantum Size Effects and Electronic Properties of Semiconductor Microcrystallites (Zero-Dimensional Systems) and Some Quasi-Two-Dimensional Systems Adv. Phys.42, 173– 266(1993).
    [8] Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS2 Transistors. Nat. Nanotechnol. 6, 147–150(2011).
    [9] Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83, 245213 (2011).
    [10] Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 10, 1271–1275(2010).
    [11] Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
    [12] Ding, Y.First principles study of structural, vibrational and electronic properties of graphene-like MX(2) (M = Mo, Nb, W, Ta; X = S, Se, Te) monolayers J. Phys.: Condens. Matter. 406, 2254– 2260(2011).
    [13] Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).
    [14] Balendhran, S.; Deng, J. K.; Ou, J. Z.; Walia, S.; Scott, J.; Tang, J. S.; Wang, K. L.; Field, M. R.; Russo, S.; Zhuiykov, S.et al.Enhanced Charge Carrier Mobility in Two-Dimensional High Dielectric Molybdenum Oxide Adv.Mater.25, 109– 114(2013).
    [15] Fivaz, R. & Mooser, E. Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163, 743–755 (1967).
    [16] Podzorov, V., Gershenson, M. E., Kloc, C., Zeis, R. & Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84, 3301–3303 (2004).
    [17] Newaz, A. K. M., Puzyrev, Y. S., Wang, B., Pantelides, S. T. & Bolotin, K. I. Probing charge scattering mechanisms in suspended graphene by varying its dielectric environment. Nature Commun. 3, 734 (2012).
    [18] Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A.High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts Nano Lett.12, 3788– 92(2012).
    [19] Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano.4, 2695–2700(2010).
    [20] Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).
    [21] Chang, C.; Zhang, W.; Lee, Y.-H.; Lin, Y.-C.; Chang, M.-T.; Su, C.-Y.; Chang, C.-S.; Li, H.; Shi, Y.; Zhang, H.; Lai, C.-S.; Li, L.-J.Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates Nano Lett.12, 1538– 44(2012).
    [22] Liu, K. K., Zhang, W., Lee, Y. H., Lin, Y. C., Chang, M. T., Su, C. Y., ... & Li, L. J. (2012). Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates Nano letters 12.3 1538-1544(2012)
    [23] Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).
    [24] Molina-Sanchez, A. & Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 84, 155413(2011).
    [25] Ferrari, A. C.; Basko, D. M.Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene Nat. Nanotechnol. 8, 235–246(2013).
    [26] Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
    [27] Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M.Photoluminescence from Chemically Exfoliated MoS2 Nano Lett.11, 5111– 16(2011).
    [28] Tsirlina, T.; Feldman, Y.; Homyonfer, M.; Sloan, J.; Hutchison, J. L.; Tenne, R.Synthesis and Characterization of Inorganic Fullerene-like WSe2Material Fullerene Sci. Technol. 6, 157– 165(1998).
    [29] Shaw, J. C.; Zhou, H.; Chen, Y.; Weiss, N. O.; Liu, Y.; Huang, Y.; Duan, X. Chemical Vapor Deposition Growth of Monolayer MoSe2 Nanosheets. Nano Res. 7, 1–7(2014).
    [30] Lu, X.; Utama, M. I. B.; Lin, J. H.; Gong, X.; Zhang, J.; Zhao, Y. Y.; Pantelides, S. T.; Wang, J. X.; Dong, Z. L.; Liu, Z.et al.Large-Area Synthesis of Monolayer and Few-Layer MoSe2 Films on SiO2 Substrates Nano Lett. 14, 2419– 2425(2014).
    [31] Wang, X.; Gong, Y.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E.et al.Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe2 ACS Nano. 8, 5125– 5131(2014).
    [32] Xia, J.; Huang, X.; Liu, L. Z.; Wang, M.; Wang, L.; Huang, B.; Zhu, D. D.; Li, J. J.; Gu, C. Z.; Meng, X. M.CVD Synthesis of Large-Area, Highly Crystalline MoSe2 Atomic Layers on Diverse Substrates and Application to Photodetectors Nanoscale . 6, 8949– 8955(2014).
    [33] Chang, Y. H.; Zhang, W.; Zhu, Y.; Han, Y.; Pu, J.; Chang, J. K.; Hsu, W. T.; Huang, J. K.; Hsu, C. L.; Chiu, M. H. et al. Monolayer MoSe2 Grown by Chemical Vapor Deposition for Fast Photodetection. ACS Nano. 8, 8582-8590(2014).
    [34] A. Bachmatiuk, R.F. Abelin, H.T. Quang, B. Trzebicka, J. Eckert, M.H. Rummeli, Chemical vapor deposition of twisted bilayer and few-layer MoSe2 over SiO x substrates.Nanotechnol. 25, 365603–365606(2014).
    [35] Gourmelon, E.; Lignier, O.; Hadouda, H.; Couturier, G.; Bernède, J. C.; Tedd, J.; Pouzet, J.; Salardenne, J.MS2 (M = W, Mo) Photosensitive Thin Films for Solar Cells Sol. Energy Mater. Sol. Cells. 46, 115– 121(1997).
    [36] Lee, H. S.; Min, S.-W.; Chang, Y.-G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S.MoS2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap Nano Lett.12, 3695– 3700(2012).
    [37] Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials. Nano Lett. 13, 3664–3670(2013).
    [38] Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H.Single-Layer MoS2 Phototransistors ACS Nano .6, 74– 80(2012).
    [39] Li, H.-M.; Lee, D.-Y.; Choi, M. S.; Qu, D.; Liu, X.; Ra, C.-H.; Yoo, W. J.Metal-Semiconductor Barrier Modulation for High Photoresponse in Transition Metal Dichalcogenide Field Effect Transistors Sci. Rep. 4, 404(2014).
    [40] Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J.et al.High-Detectivity Multilayer MoS2Phototransistors with Spectral Response from Ultraviolet to Infrared Adv. Mater. 24, 5832– 5836(2012).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE