簡易檢索 / 詳目顯示

研究生: 王莉茜
Wang, Li-Qian
論文名稱: 聚氨酯基高分子的功能設計作為超級電容器與鋰電池的黏著劑、膠態高分子電解質及界面修飾層
Functions Design of Polyurethane-Based Polymers as a Binder, Gel Polymer Electrolyte, and Modified Layer for Supercapacitors and Lithium Batteries
指導教授: 胡啟章
Hu, Chi-Chang
口試委員: 周鶴修
Chou, Ho-Hsiu
張仍奎
Chang, Jeng-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 189
中文關鍵詞: 聚氨酯聚丙烯酸可撓電雙層電容器鋰電池膠態高分子電解質黏著劑界面修飾層原位聚合
外文關鍵詞: polyurethane-polyacrylic acid, flexible, electric double-layer capacitor, lithium battery, gel polymer electrolyte, binder, modified Layer, in-situ polymerization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在設計功能性高分子並應用於儲能裝置,依高分子製備方式可分為兩部分,PUPAA和PU-co-AA。

    1. 雙功能高分子PUPAA於超級電容器之應用
    為增進用於儲能裝置之超級電容器的性能,此研究製備了具雙功能之黏性共聚物聚氨酯-聚丙烯酸(PUPAA),不僅可作為超級電容器中之膠態高分子電解質,亦可作為電極材料中之黏著劑。由此透明且機械性質良好的PUPAA薄膜為基質,吸取有機液體電解質(四乙基四氟硼酸銨鹽溶於碳酸丙烯酯溶劑)形成之膠態電解質,結合了有機液體和高分子固態電解質的優點,在無電解液洩漏風險的同時,具有3.2 mS cm-1之高離子電導率。且根據電化學分析,當在2.5 V之電位窗,0.5 A g-1之電流密度時,使用活性炭作為電極活性材料之可撓式全固態超級電容器表現優異,具有139.84 F g-1之比電容值, 30.35 Wh kg-1之能量密度,並在彎曲條件下具有良好的撓曲穩定性,當彎曲角度90o時,依舊保有超過94 %的電容保持率。
    此外,為了在電極材料內部形成離子通道,進而提升超級電容器之性能。本研究採用製備之黏性PUPAA高分子取代電極材料中常用之黏著劑聚偏二氟乙烯(PVDF),除了具備固定活性材料之功能,PUPAA在吸取電解液後可形成深入電極層之離子通道,提升電解質層與電極層之接觸面積並優化活性材料之利用率。結果表明,以PUPAA和PVDF混合作為黏著劑時,隨著電極活性材料沉積量的提升,由於離子通道的作用,在單位面積下比電容值亦與沉積量呈現正比的提升。

    2. UV固化PU-co-AA於超級電容器和鋰電池之應用
    為改善膠態高分子電解質(GPE)和多孔電極之間的接觸問題,本研究將包含電解液和單體的液相混合物透過UV照射於電池中原位凝膠化,使GPE能深入電極材料顆粒和隔離膜的孔隙。相較於傳統預先製備的薄膜,此原位製備GPE之方式成功解決電極和電解質間的接觸問題。當應用於超電容時,在與PUPAA電極黏著劑協同下,已得到最佳化結果。於0.5 ~ 5 A g-1電流密度下,皆具有相較於商用液態系統更佳的電化學表現,0.5A g-1時,電容值高達143.5 F g-1。
    而當應用於鋰電池時,UV固化PU-co-AA不僅可作為膠態高分子電解質,亦可作為液態系統中的界面修飾層。除了具有與電極緊密接觸之原位聚合優勢,PU-co-AA因富含醚基而具有高離子導電度,更透過引入帶負電之羧酸根離子而有高鋰離子轉移數(tLi+ = 0.86),實現均勻的鍍鋰/剝鋰行為。作為GPE在Cu||Li和Li||Li電池中皆有優於液態系統的效果,有效降低初始成核過電位與極化現象。且在Li||LFP全電池中,羧酸根離子的引入提高容量保持率,使至100圈時保有71 %。此外,為穩定液態系統的電極電解質界面,亦將PU-co-AA作為Li||NMC811電池中的界面修飾層,並藉由添加Al2O3¬進一步提高離子導電度與鋰離子轉移數(tLi+ = 0.92)。未經修飾的電池循環至約100圈即無法運作,而於Li塗覆界面修飾層則可穩定循環至150圈。且在第100圈時容量仍有125.3 mAh g-1,明顯大於未經修飾的88.5 mAh g-1。


    This thesis aims to design functional polymers and apply to energy storage devices. According to the preparation method, it can be divided into two parts, PUPAA and PU-co-AA.
    1. Bi-functional polymer PUPAA for organic supercapacitors
    To enhance the performance of the supercapacitor for energy storage devices, in this study, the sticky copolymer polyurethane-polyacrylic acid (PUPAA) was prepared and used not only as a gel polymer electrolyte in supercapacitor but also as a binder. The freestanding and transparent PUPAA film as the matrix, and swelled using an organic liquid electrolyte (TEABF4 in propylene carbonate solvents) combines the advantages of the organic liquids and of conventional polymers. Guaranteeing high ionic conductivity, which is recorded to be as high as 3.2 mS cm-1 without the risk of electrolyte leakage. According to electrochemical analysis, when operated within 0-2.5 V, the quasi-all solid-state supercapacitors using activated carbon as electrode material showed rather good capacitance, energy densities and flexibility, that is, a high specific capacitance of 139.84 F g-1 at 0.5 A g-1, a large energy density of 30.35 Wh kg-1, and a remarkably flexible performance under bending conditions (over 94 % specific capacitance retention at a bending angle of 90o).
    Moreover, to develop a high performance supercapacitor by generating ionic tunnels in the electrode material. The commercial binder, poly(vinylidene fluoride) (PVDF) was also substituted by PUPAA in electrodes, which can more deeply bring electrolyte ions into the inner site of active materials, and thus increase the effective area between the interface of electrodes and electrolyte. The results showed that the areal specific capacitance of the electrode, which used PUPAA mixed with PVDF as the binder, was increased with the increasing of mass loading in the same ratio.
    2. UV-cured PU-co-AA for supercapacitors and lithium batteries
    To improve the contact problem between gel polymer electrolytes (GPE) and porous electrodes, in this study, liquid mixtures containing liquid electrolyte and monomers were in situ gelled in batteries through UV irradiation. So that GPEs can penetrate into the pores of electrode materials and the separator. Compared with the traditional pre-prepared film, using this in-situ method to prepare GPEs successfully solves the contact problem between the electrode and electrolyte. When applied to supercapacitors, optimized results have been obtained in cooperation with PUPAA binder. Having better electrochemical performance than the commercial liquid system under current densities of 0.5 ~ 5 A g-1, and the specific capacitance is as high as 143.5 F g-1 at 0.5 A g-1.
    When applied to lithium batteries, UV-cured PU-co-AA can be used not only as gel polymer electrolytes, but also as modified layers in liquid systems. In addition to the high ionic conductivity endowed by abundant ether groups, through introducing negatively charged carboxylate ions, it shows a high lithium transfer number (tLi+ = 0.86) and achieves uniform lithium plating/ stripping behavior. As a GPE, it effectively reduced the nucleation overpotential and polarization phenomenon in Cu||Li and Li||Li cells. And in Li||LFP full cells, the introduction of carboxylate ions enhanced the capacity retention, which still retained 71% at the 100th cycle. Moreover, to stabilize interfaces between electrodes and electrolyte in a liquid system, PU-co-AA was also used as modified layers for Li||NMC811 cells. And by adding Al2O3 nanoparticles, ionic conductivities and the lithium transfer number (tLi+ = 0.92) were further increased. Unmodified cells can no longer work after 100 cycles, while with a modified layer coated on Li, stably cycled to 150 times can be achieved. And at the 100th cycle, the discharge capacity was still 125.3 mAh g-1, which was significantly larger than the unmodified one, 88.5 mAh g-1.

    摘要 I ABSTRACT III 致謝 V 目錄 VI 圖目錄 XIII 表目錄 XXII 第一章 緒論 1 1-1 電化學原理 1 1-1-1 電化學反應系統 1 1-1-2 影響電化學反應系統之變數 4 1-2超級電容器 5 1-2-1 超級電容器之種類與機制 5 1-2-1-1 電雙層超級電容器(Electric double layer capacitors) 7 1-2-1-2 擬電容機制(Pseudocapacitors) 9 1-2-2 可撓曲式超級電容器 10 1-2-2-1 纖維式可撓曲超級電容器(fiber liked flexible SCs) 10 1-2-2-2 紙式可撓曲超級電容器(paper liked flexible SCs) 11 1-2-2-3 3D多孔式可撓曲超級電容器(3D porous flexible SCs) 12 1-2-3電解質種類 13 1-2-3-1 水相與有機相電解質 13 1-2-3-2 離子液體 15 1-2-3-3 高分子電解質 16 1-3鋰金屬電池 18 1-3-1 基本概念 18 1-3-2 循環機制與挑戰 19 第二章 文獻回顧 22 2-1 液態電解質 22 2-1-1 電解質溶劑 22 2-1-2 電解質添加劑 24 2-1-3 人造SEI 25 2-1-3-1非極性基團 25 2-1-3-2極性基團 26 2-1-3-3帶電基團 28 2-1-3-4多種基團與陶瓷填充物 29 2-2 高分子電解質 32 2-2-1 固態高分子電解質(SPE) 32 2-2-2 複合高分子電解質(CPE) 34 2-2-3 膠態高分子電解質(GPE) 35 2-3 膠態高分子電解質 37 2-4 電極材料黏著劑 43 2-4-1 聚偏二氟乙烯 43 2-4-2 聚氨酯黏著劑 45 2-4-3 水性黏著劑 46 第三章 雙功能高分子PUPAA於超級電容器之應用 48 3-1 研究動機 48 3-2 實驗部分 51 3-2-1 實驗藥品 51 3-2-2 實驗儀器 53 3-2-2-1 實驗儀器設備清單 53 3-2-2-2 實驗儀器設備原理 56 3-2-3 高分子合成 61 3-2-3-1聚氨脂-聚丙烯酸 (PUPAA) 之製備 61 3-2-3-2 不同PAA添加量之PUPAA製備 61 3-2-4 電極與膠態電解質之製備 63 3-2-5 電池組裝 63 3-2-6 電化學檢測 64 3-3 結構與熱性質分析 66 3-3-1 FTIR鑑定分析 66 3-3-2 DSC鑑定分析 69 3-3-3 TGA鑑定分析 71 3-3-4 SEM鑑定分析 73 3-3-5 PUPAA交聯性質分析 74 3-4 PUPAA作為膠態高分子電解質之探討 75 3-4-1 離子導電度分析 75 3-4-2 活化能分析 79 3-4-3 電化學行為分析 79 3-4-3-1 薄膜厚度最佳化與性能分析 80 3-4-3-2 PUPAA GPE與商用電解質之性能比較 83 3-5 類固態超級電容器測試 88 3-5-1 電化學行為測試 88 3-5-2 可撓性測試 92 3-6 PUPAA作為電極黏著劑之探討 95 3-6-1 電極製備 95 3-6-2 PUPAA黏著劑之選擇 96 3-6-2-1 不同PAA添加量之PUPAA接觸角分析 96 3-6-2-2 電化學分析 97 3-6-2-3 黏著劑於電極之重量百分比 100 3-6-3電極材料組成優化 102 3-6-4 活性材料於不同沉積量之電化學分析 105 3-6-4-1於不同沉積厚度之利用率探討 105 3-6-4-2於不同沉積厚度之阻抗分析 110 3-7 結論 112 第四章 UV固化PU-CO-AA 作為膠態高分子電解質以增進超電容及鋰電池之性能 114 4-1 研究動機 114 4-2 實驗部分 118 4-2-1 實驗藥品 118 4-2-2 膠態電解質之製備 120 4-2-2-1 PU oligomer之合成 120 4-2-2-2 LiAA、LiMAA單體之製備 121 4-2-2-3 UV固化GPE之前驅物溶液製備 121 4-2-3 電池組裝 123 4-2-4 電化學檢測 123 4-3 結構與熱性質分析 124 4-3-1 FTIR鑑定分析 124 4-3-2 DSC鑑定分析 128 4-3-3 TGA鑑定分析 129 4-4 電化學性質分析 130 4-4-1 離子導電度分析 130 4-4-2 活化能分析 131 4-4-3 鋰離子轉移數分析 132 4-4-4 電化學穩定窗口分析 134 4-5 於超電容之應用 135 4-5-1 不同PU-co-AA之性能比較 135 4-5-2 與PUPAA電極黏著劑之協同 137 4-5-3 與商用電解液之性能比較 140 4-6 於鋰電池之應用 142 4-6-1 Li || Li 結果與討論 142 4-6-2 Cu || Li 結果與討論 146 4-6-3 Li || LFP 結果與討論 150 4-7 結論 154 第五章 UV固化PU-CO-AA 作為界面修飾層於鋰電池之性能 156 5-1 研究動機 156 5-2 實驗部分 159 5-2-1 實驗藥品 159 5-2-2 界面修飾層之製備 160 5-2-3 電池組裝 161 5-2-4 電化學檢測 161 5-3 結構與熱性質分析 (Al2O3 added)………………………………162 5-3-1 FTIR鑑定分析 162 5-3-2 DSC鑑定分析 163 5-3-3 TGA鑑定分析 164 5-4 電化學性質分析 165 5-4-1 離子導電度分析 165 5-4-2 活化能分析 166 5-4-3 鋰離子轉移數分析 167 5-4-4 電化學穩定窗口分析 168 5-5 LI || NMC811結果與討論 169 5-6 結論 174 第六章 未來展望 175 參考文獻 178

    1. 胡啟章, 電化學原理與方法(二版). 2011: 五南圖書出版股份有限公司.
    2. Faulkner, A.J.B.a.L.R., Electochemical Methods Fundamentals and Applications. in John Wiley & Sonic, Inc 2001.
    3. 陳奕勳, 陽極沈積錳系水合氧化物於電化學超級電容器之應用. 2003: 撰者.
    4. Bard, A.J. and L.R. Faulkner, ELECTROCHEMICAL METHODS Fundamentals and Applications. 2001: JOHN WILEY & SONS, INC.
    5. An, K.H., et al., Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Advanced functional materials, 2001. 11(5): p. 387-392.
    6. Burke, A., Ultracapacitors: why, how, and where is the technology. Journal of power sources, 2000. 91(1): p. 37-50.
    7. Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nature materials, 2008. 7(11): p. 845.
    8. Winter, M. and R.J. Brodd, What are batteries, fuel cells, and supercapacitors? 2004, ACS Publications.
    9. Knox, J.H., B. Kaur, and G. Millward, Structure and performance of porous graphitic carbon in liquid chromatography. Journal of Chromatography A, 1986. 352: p. 3-25.
    10. Lee, J., J. Kim, and T. Hyeon, Recent progress in the synthesis of porous carbon materials. Advanced Materials, 2006. 18(16): p. 2073-2094.
    11. Liu, Y., et al., Flexible and Binder-Free Hierarchical Porous Carbon Film for Supercapacitor Electrodes Derived from MOFs/CNT. 2017.
    12. Shen, J., et al., An Asymmetric Supercapacitor with Both Ultra-High Gravimetric and Volumetric Energy Density Based on 3D Ni (OH) 2/MnO2@ Carbon Nanotube and Activated Polyaniline-Derived Carbon. ACS applied materials & interfaces, 2016. 9(1): p. 668-676.
    13. Shi, P., et al., Design of Amorphous Manganese Oxide@ Multiwalled Carbon Nanotube Fiber for Robust Solid-State Supercapacitor. ACS nano, 2016. 11(1): p. 444-452.
    14. Yu, J., et al., Omnidirectionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films. ACS nano, 2016. 10(5): p. 5204-5211.
    15. Zhao, W., et al., Highly Stable Carbon Nanotube/Polyaniline Porous Network for Multifunctional Applications. ACS applied materials & interfaces, 2016. 8(49): p. 34027-34033.
    16. Zhang, Y., et al., Progress of electrochemical capacitor electrode materials: A review. International journal of hydrogen energy, 2009. 34(11): p. 4889-4899.
    17. Bae, J., et al., Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew Chem Int Ed Engl, 2011. 50(7): p. 1683-7.
    18. Bai, H., C. Li, and G. Shi, Functional composite materials based on chemically converted graphene. Advanced Materials, 2011. 23(9): p. 1089-1115.
    19. Brezesinski, T., et al., Ordered mesoporous [alpha]-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nature materials, 2010. 9(2): p. 146-151.
    20. Huang, L., et al., Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano letters, 2013. 13(7): p. 3135-3139.
    21. Jiang, J., et al., Recent advances in metal oxide‐based electrode architecture design for electrochemical energy storage. Advanced materials, 2012. 24(38): p. 5166-5180.
    22. Wang, H., et al., Ni (OH) 2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. Journal of the American Chemical Society, 2010. 132(21): p. 7472-7477.
    23. Xia, X., et al., High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS nano, 2012. 6(6): p. 5531-5538.
    24. Dong, L., et al., Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J. Mater. Chem. A, 2016. 4(13): p. 4659-4685.
    25. Areir, M., et al., 3D printing of highly flexible supercapacitor designed for wearable energy storage. Materials Science and Engineering: B, 2017. 226(Supplement C): p. 29-38.
    26. Han, Y., et al., Recent progress in 2D materials for flexible supercapacitors. Journal of Energy Chemistry, 2017.
    27. Herou, S., et al., Biomass-derived electrodes for flexible supercapacitors. Current Opinion in Green and Sustainable Chemistry, 2017.
    28. Song, X.-l., et al., Freestanding needle-like polyaniline–coal based carbon nanofibers composites for flexible supercapacitor. Electrochimica Acta, 2016. 206(Supplement C): p. 337-345.
    29. Xi, S., et al., Flexible supercapacitors on chips with interdigital carbon nanotube fiber electrodes. Materials Letters, 2016. 175(Supplement C): p. 126-130.
    30. Gupta, V. and N. Miura, Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochimica Acta, 2006. 52(4): p. 1721-1726.
    31. Jost, K., G. Dion, and Y. Gogotsi, Textile energy storage in perspective. Journal of Materials Chemistry A, 2014. 2(28): p. 10776.
    32. Jost, K., et al., Carbon coated textiles for flexible energy storage. Energy & Environmental Science, 2011. 4(12): p. 5060.
    33. Lee, S.-Y., et al., Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy & Environmental Science, 2013. 6(8): p. 2414.
    34. Lu, X., et al., Flexible solid-state supercapacitors: design, fabrication and applications. Energy & Environmental Science, 2014. 7(7): p. 2160.
    35. Zhang, Y.Z., et al., Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chem Soc Rev, 2015. 44(15): p. 5181-99.
    36. Niu, Z., et al., Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy & Environmental Science, 2011. 4(4): p. 1440.
    37. Yan, X., et al., Fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor. Nanoscale, 2011. 3(1): p. 212-6.
    38. Meng, C., C. Liu, and S. Fan, Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties. Electrochemistry Communications, 2009. 11(1): p. 186-189.
    39. Zhang, L.L., et al., Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors. Nano Letters, 2012. 12(4): p. 1806-1812.
    40. Fan, Z., et al., Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density. Advanced Functional Materials, 2011. 21(12): p. 2366-2375.
    41. Qunting Qu, et al., Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors. J. Phys. Chem. C, 2009. 113: p. 14020-14027.
    42. Sheng Chen, et al., Graphene Oxide MnO2 Nanocomposites for Supercapacitors. ACS Nano, 2010. 4: p. 2822-2830.
    43. Yan Huang, et al., From Industrially Weavable and Knittable Highly Conductive Yarns to Large Wearable Energy Storage Textiles. ACS Nano, 2015. 9: p. 4766-4775.
    44. Meng, Y., et al., All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater, 2013. 25(16): p. 2326-31.
    45. Cheng, H., et al., Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale, 2013. 5(8): p. 3428-34.
    46. Hu, L., et al., Highly conductive paper for energy-storage devices. Proceedings of the National Academy of Sciences, 2009. 106(51): p. 21490-21494.
    47. Du Pasquier, A., et al., A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. Journal of Power Sources, 2003. 115(1): p. 171-178.
    48. Park, B.-O., et al., Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness. Journal of Power Sources, 2004. 134(1): p. 148-152.
    49. Tao, J., et al., Hierarchical nanostructures of polypyrrole@MnO2 composite electrodes for high performance solid-state asymmetric supercapacitors. Nanoscale, 2014. 6(5): p. 2922-8.
    50. Hu, L., et al., Stretchable, Porous, and Conductive Energy Textiles. Nano Letters, 2010. 10(2): p. 708-714.
    51. Fischer, N., et al., Pushing the limits of energetic materials - the synthesis and characterization of dihydroxylammonium 5,5[prime or minute]-bistetrazole-1,1[prime or minute]-diolate. Journal of Materials Chemistry, 2012. 22(38): p. 20418-20422.
    52. Liu, W.-w., et al., Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. Journal of Materials Chemistry, 2012. 22(33): p. 17245-17253.
    53. González, A., et al., Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 2016. 58: p. 1189-1206.
    54. Kötz, R. and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000. 45(15): p. 2483-2498.
    55. Wang, G., L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev, 2012. 41(2): p. 797-828.
    56. Pandolfo, A.G. and A.F. Hollenkamp, Carbon properties and their role in supercapacitors. Journal of Power Sources, 2006. 157(1): p. 11-27.
    57. Galiński, M., A. Lewandowski, and I. Stępniak, Ionic liquids as electrolytes. Electrochimica Acta, 2006. 51(26): p. 5567-5580.
    58. Liu, H., Y. Liu, and J. Li, Ionic liquids in surface electrochemistry. Physical Chemistry Chemical Physics, 2010. 12(8): p. 1685-1697.
    59. Warner, I.M., B. El-Zahab, and N. Siraj, Perspectives on moving ionic liquid chemistry into the solid phase. Analytical chemistry, 2014. 86(15): p. 7184-7191.
    60. Watanabe, M. and N. Ogata, Ionic conductivity of polymer electrolytes and future applications. Polymer International, 1988. 20(3): p. 181-192.
    61. Shriver, D.F., et al., Structure and ion transport in polymer-salt complexes. Solid State Ionics, 1981. 5(Supplement C): p. 83-88.
    62. Luo, Z., et al., Interfacial challenges towards stable Li metal anode. Nano Energy, 2021. 79: p. 105507.
    63. Wu, X., et al., Electrolyte for lithium protection: From liquid to solid. Green Energy & Environment, 2019. 4(4): p. 360-374.
    64. Zhang, J.-G., Anode-less. Nature Energy, 2019. 4(8): p. 637-638.
    65. Qian, J., et al., Anode‐free rechargeable lithium metal batteries. Advanced Functional Materials, 2016. 26(39): p. 7094-7102.
    66. Wang, C., et al., Controlling Li Ion Flux through Materials Innovation for Dendrite-Free Lithium Metal Anodes. Advanced Functional Materials, 2019. 29(49): p. 1905940.
    67. Wang, C., et al., Controlling Li Ion Flux through Materials Innovation for Dendrite‐Free Lithium Metal Anodes. Advanced Functional Materials, 2019. 29(49): p. 1905940.
    68. Bieker, G., M. Winter, and P. Bieker, Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Physical Chemistry Chemical Physics, 2015. 17(14): p. 8670-8679.
    69. Lin, D., Y. Liu, and Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nature nanotechnology, 2017. 12(3): p. 194.
    70. Xu, R., et al., Artificial interphases for highly stable lithium metal anode. Matter, 2019. 1(2): p. 317-344.
    71. Liu, X., et al., Novel Organophosphate‐Derived Dual‐Layered Interface Enabling Air‐Stable and Dendrite‐Free Lithium Metal Anode. Advanced Materials, 2020. 32(2): p. 1902724.
    72. Lu, P. and S.J. Harris, Lithium transport within the solid electrolyte interphase. Electrochemistry Communications, 2011. 13(10): p. 1035-1037.
    73. Aurbach, D., et al., A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid state ionics, 2002. 148(3-4): p. 405-416.
    74. Ding, F., et al., Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode. Journal of The Electrochemical Society, 2013. 160(10): p. A1894.
    75. Jiao, S., et al., Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nature Energy, 2018. 3(9): p. 739-746.
    76. Yu, H., et al., Dendrite-free lithium deposition with self-aligned columnar structure in a carbonate–ether mixed electrolyte. ACS Energy Letters, 2017. 2(6): p. 1296-1302.
    77. Zhang, X.-Q., et al., Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Advanced Functional Materials, 2017. 27(10): p. 1605989.
    78. Yildirim, H., et al., First-Principles Analysis of Defect Thermodynamics and Ion Transport in Inorganic SEI Compounds: LiF and NaF. ACS Applied Materials & Interfaces, 2015. 7(34): p. 18985-18996.
    79. Li, W., et al., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nature communications, 2015. 6(1): p. 1-8.
    80. Zhang, W., et al., Colossal Granular Lithium Deposits Enabled by the Grain‐Coarsening Effect for High‐Efficiency Lithium Metal Full Batteries. Advanced Materials, 2020. 32(24): p. 2001740.
    81. Zhang, S.S., Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochimica Acta, 2012. 70: p. 344-348.
    82. Gao, S., et al., Ionic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries – A review. Materials Today, 2020. 40: p. 140-159.
    83. Assegie, A.A., et al., Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale, 2018. 10(13): p. 6125-6138.
    84. Xue, Z., D. He, and X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 2015. 3(38): p. 19218-19253.
    85. Kang, I., Y.-S. Lee, and D.-W. Kim, Improved Cycling Stability of Lithium Electrodes in Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2013. 161: p. A53-A57.
    86. Ma, G., et al., Enhanced cycle performance of a Li–S battery based on a protected lithium anode. Journal of Materials Chemistry A, 2014. 2(45): p. 19355-19359.
    87. Sun, Y., et al., A Novel Organic “Polyurea” Thin Film for Ultralong-Life Lithium-Metal Anodes via Molecular-Layer Deposition. Advanced Materials, 2019. 31(4): p. 1806541.
    88. Wang, X., et al., Simultaneously Regulating Lithium Ion Flux and Surface Activity for Dendrite-Free Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2019. 11(5): p. 5159-5167.
    89. Luo, J., C.C. Fang, and N.L. Wu, High Polarity Poly(vinylidene difluoride) Thin Coating for Dendrite-Free and High-Performance Lithium Metal Anodes. Advanced Energy Materials, 2018. 8(2).
    90. Wang, Y., et al., Gel Polymer Electrolyte with High Li+ Transference Number Enhancing the Cycling Stability of Lithium Anodes. ACS Applied Materials & Interfaces, 2019. 11(5): p. 5168-5175.
    91. Xu, R., et al., Dual-Phase Single-Ion Pathway Interfaces for Robust Lithium Metal in Working Batteries. Advanced Materials, 2019. 31(19): p. 1808392.
    92. Cao, P.-F., et al., Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2018. 10(4): p. 3470-3478.
    93. Li, N.W., et al., A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes. Angewandte Chemie - International Edition, 2018. 57(6): p. 1505-1509.
    94. Zhang, S.-J., et al., A Natural Biopolymer Film as a Robust Protective Layer to Effectively Stabilize Lithium-Metal Anodes. Small, 2018. 14(31): p. 1801054.
    95. Lee, H., et al., A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. Journal of Power Sources, 2015. 284: p. 103-108.
    96. Kim, J.-H., et al., Improved Cycling Performance of Lithium–Oxygen Cells by Use of a Lithium Electrode Protected with Conductive Polymer and Aluminum Fluoride. ACS Applied Materials & Interfaces, 2016. 8(47): p. 32300-32306.
    97. Jiang, S., et al., Nafion/Titanium Dioxide-Coated Lithium Anode for Stable Lithium–Sulfur Batteries. Chemistry - An Asian Journal, 2018. 13(10): p. 1379-1385.
    98. Wright, P.V., Electrical conductivity in ionic complexes of poly (ethylene oxide). Polymer International, 1975. 7(5): p. 319-327.
    99. Armand, M., J. Chabagno, and M. Duclot. Second international meeting on solid electrolytes, St Andrews, Scotland; September 20–22, 1978. in Extended Abstract.
    100. Killis, A., et al., Correlation between ionic conductivity and 7 Li-NMR of polyether-polyurethane networks containing lithium perchlorate. Polymer Bulletin, 1982. 6(7): p. 351-358.
    101. Hall, P., GR davies, JE Mcintyre, IM Ward, DJ Bannister, LMF Le Brocq. Polymer Communications, 1986. 27: p. 98.
    102. Vallée, A., S. Besner, and J. Prud'Homme, Comparative study of poly (ethylene oxide) electrolytes made with LiN (CF3SO2) 2, LiCF3SO3 and LiClO4: Thermal properties and conductivity behaviour. Electrochimica acta, 1992. 37(9): p. 1579-1583.
    103. Meyer, W.H., Polymer electrolytes for lithium‐ion batteries. Advanced materials, 1998. 10(6): p. 439-448.
    104. Weston, J. and B. Steele, Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes. Solid State Ionics, 1982. 7(1): p. 75-79.
    105. Appetecchi, G., et al., Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes: II. All solid-state Li/LiFePO4 polymer batteries. Journal of power sources, 2003. 124(1): p. 246-253.
    106. Bronstein, L.M., et al., Design of organic–inorganic solid polymer electrolytes: synthesis, structure, and properties. Journal of Materials Chemistry, 2004. 14(12): p. 1812-1820.
    107. Croce, F., et al., Physical and chemical properties of nanocomposite polymer electrolytes. The Journal of Physical Chemistry B, 1999. 103(48): p. 10632-10638.
    108. Krawiec, W., et al., Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. Journal of Power Sources, 1995. 54(2): p. 310-315.
    109. Dias, F.B., L. Plomp, and J.B. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries. Journal of Power Sources, 2000. 88(2): p. 169-191.
    110. Feuillade, G. and P. Perche, Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry, 1975. 5(1): p. 63-69.
    111. Stephan, A.M., Review on gel polymer electrolytes for lithium batteries. European polymer journal, 2006. 42(1): p. 21-42.
    112. Abraham, K. and M. Alamgir, Room temperature polymer electrolytes and batteries based on them. Solid State Ionics, 1994. 70: p. 20-26.
    113. Shim, J., et al., Novel composite polymer electrolytes containing poly (ethylene glycol)-grafted graphene oxide for all-solid-state lithium-ion battery applications. Journal of Materials Chemistry A, 2014. 2(34): p. 13873-13883.
    114. Kuo, P.-L., et al., High performance of transferring lithium ion for polyacrylonitrile-interpenetrating crosslinked polyoxyethylene network as gel polymer electrolyte. ACS applied materials & interfaces, 2014. 6(5): p. 3156-3162.
    115. Gohil, J.M. and D.G. Karamanev, Novel approach for the preparation of ionic liquid/imidazoledicarboxylic acid modified poly (vinyl alcohol) polyelectrolyte membranes. Journal of Membrane Science, 2016. 513: p. 33-39.
    116. Yang, X., et al., A high‐performance graphene oxide‐doped ion gel as gel polymer electrolyte for all‐solid‐state supercapacitor applications. Advanced Functional Materials, 2013. 23(26): p. 3353-3360.
    117. Na, R., et al., A novel poly (ethylene glycol)–grafted poly (arylene ether ketone) blend micro-porous polymer electrolyte for solid-state electric double layer capacitors formed by incorporating a chitosan-based LiClO 4 gel electrolyte. Journal of Materials Chemistry A, 2016. 4(46): p. 18116-18127.
    118. Na, R., et al., A flexible solid-state supercapacitor based on a poly (aryl ether ketone)–poly (ethylene glycol) copolymer solid polymer electrolyte for high temperature applications. RSC advances, 2016. 6(69): p. 65186-65195.
    119. Shim, J., et al., Synthesis and properties of organic/inorganic hybrid branched-graft copolymers and their application to solid-state electrolytes for high-temperature lithium-ion batteries. Polymer Chemistry, 2014. 5(10): p. 3432-3442.
    120. Huang, C.W., et al., Gel electrolyte derived from poly (ethylene glycol) blending poly (acrylonitrile) applicable to roll‐to‐roll assembly of electric double layer capacitors. Advanced Functional Materials, 2012. 22(22): p. 4677-4685.
    121. Schroeder, M., et al., An investigation on the use of a methacrylate-based gel polymer electrolyte in high power devices. Journal of the Electrochemical Society, 2013. 160(10): p. A1753.
    122. Na, R., et al., Solvent-free synthesis of an ionic liquid integrated ether-abundant polymer as a solid electrolyte for flexible electric double-layer capacitors. Journal of Materials Chemistry A, 2017. 5(37): p. 19703-19713.
    123. Lu, Q., et al., Dendrite‐free, high‐rate, long‐life lithium metal batteries with a 3D cross‐linked network polymer electrolyte. Advanced Materials, 2017. 29(13): p. 1604460.
    124. Levi, N., et al., Properties of polyvinylidene difluoride− carbon nanotube blends. Nano Letters, 2004. 4(7): p. 1267-1271.
    125. Maranchi, J., A. Hepp, and P. Kumta, High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochemical and solid-state letters, 2003. 6(9): p. A198-A201.
    126. Mochizuki, T., et al., “Natto” Binder of Poly-γ-glutamate Enabling to Enhance Silicon/Graphite Composite Electrode Performance for Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering, 2017. 5(7): p. 6343-6355.
    127. Fang, C.-H., et al., A flexible and hydrophobic polyurethane elastomer used as binder for the activated carbon electrode in capacitive deionization. Desalination, 2016. 399: p. 34-39.
    128. Li, J., R. Lewis, and J. Dahn, Sodium carboxymethyl cellulose a potential binder for Si negative electrodes for Li-ion batteries. Electrochemical and Solid-State Letters, 2007. 10(2): p. A17-A20.
    129. Komaba, S., T. Ozeki, and K. Okushi, Functional interface of polymer modified graphite anode. Journal of Power Sources, 2009. 189(1): p. 197-203.
    130. Han, Z.-J., et al., High-capacity Si–graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries. Energy & environmental science, 2012. 5(10): p. 9014-9020.
    131. Chen, W.C., et al., Morphology and ionic conductivity of thermoplastic polyurethane electrolytes. Journal of applied polymer science, 2004. 91(2): p. 1154-1167.
    132. Liu, X., et al., Preparation and properties of waterborne polyurethanes with natural dimer fatty acids based polyester polyol as soft segment. Progress in Organic Coatings, 2011. 72(4): p. 612-620.
    133. Tang, Q., et al., A facile prestrain-stick-release assembly of stretchable supercapacitors based on highly stretchable and sticky hydrogel electrolyte. Journal of Power Sources, 2015. 284: p. 400-408.
    134. Wang, J.-A., et al., Designing a novel polymer electrolyte for improving the electrode/electrolyte interface in flexible all-solid-state electrical double-layer capacitors. ACS applied materials & interfaces, 2018. 10(21): p. 17871-17882.
    135. Peng, H.T., et al., PEGylation of Melittin: structural characterization and hemostatic effects. Journal of bioactive and compatible polymers, 2010. 25(1): p. 75-97.
    136. Billingham, J., C. Breen, and J. Yarwood, Adsorption of polyamine, polyacrylic acid and polyethylene glycol on montmorillonite: An in situ study using ATR-FTIR. Vibrational Spectroscopy, 1997. 14(1): p. 19-34.
    137. Wu, G., et al., Robust microcapsules with polyurea/silica hybrid shell for one-part self-healing anticorrosion coatings. Journal of materials chemistry A, 2014. 2(30): p. 11614-11620.
    138. Hofer, T.S., et al., Characterization of dynamics and reactivities of solvated ions by ab initio simulations. Journal of computational chemistry, 2004. 25(2): p. 211-217.
    139. Cho, Y.-G., et al., Gel/Solid Polymer Electrolytes Characterized by In Situ Gelation or Polymerization for Electrochemical Energy Systems. Advanced Materials, 2019. 31(20): p. 1804909.
    140. Ota, H., et al., Analysis of vinylene carbonate derived SEI layers on graphite anode. Journal of the Electrochemical Society, 2004. 151(10): p. A1659.
    141. Chai, J., et al., A superior polymer electrolyte with rigid cyclic carbonate backbone for rechargeable lithium ion batteries. ACS applied materials & interfaces, 2017. 9(21): p. 17897-17905.
    142. Bok, T., et al., An effective coupling of nanostructured Si and gel polymer electrolytes for high-performance lithium-ion battery anodes. RSC advances, 2016. 6(9): p. 6960-6966.
    143. Rufino, E.S. and E.E.C. Monteiro, Characterisation of lithium and sodium salts of poly(methacrylic acid) by FTIR and thermal analyses. Polymer, 2000. 41(11): p. 4213-4222.
    144. Gamble. Structure Determination by Spectroscopic Methods. 2018; Available from: http://sites.science.oregonstate.edu/~gablek/CH535/carbonyls.htm.
    145. Kunwong, D., N. Sumanochitraporn, and S. Kaewpirom, Curing behavior of a UV-curable coating based on urethane acrylate oligomer: The influence of reactive monomers. Songklanakarin Journal of Science and Technology, 2011. 33.
    146. Li, H., et al., Preparation and properties of poly(ethylene oxide) gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries. Electrochimica Acta, 2011. 56(6): p. 2641-2647.
    147. Mohanty, D., et al., Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries. Scientific Reports, 2016. 6(1): p. 26532.
    148. David, L., et al., Unveiling the Role of Al2O3 in Preventing Surface Reconstruction During High-Voltage Cycling of Lithium-Ion Batteries. ACS Applied Energy Materials, 2019. 2(2): p. 1308-1313.
    149. Hoang Huy, V.P., S. So, and J. Hur, Inorganic Fillers in Composite Gel Polymer Electrolytes for High-Performance Lithium and Non-Lithium Polymer Batteries. Nanomaterials, 2021. 11(3): p. 614.
    150. Croce, F., et al., Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochimica Acta, 2001. 46(16): p. 2457-2461.
    151. Kim, K.-W., et al., Composite gel polymer electrolyte with ceramic particles for LiNi1/3Mn1/3Co1/3O2-Li4Ti5O12 lithium ion batteries. Electrochimica Acta, 2017. 236: p. 394-398.
    152. Kim, S.-I., et al., Electrochemical characteristics of TMPTA- and TMPETA-based gel polymer electrolyte. Electrochimica Acta, 2004. 50(2): p. 317-321.
    153. Kim, H.-S. and S.-I. Moon, Synthesis and electrochemical performances of di(trimethylolpropane) tetraacrylate-based gel polymer electrolyte. Journal of Power Sources, 2005. 146(1): p. 584-588.
    154. Manthiram, A., Y. Fu, and Y.-S. Su, Challenges and prospects of lithium–sulfur batteries. Accounts of chemical research, 2013. 46(5): p. 1125-1134.
    155. Liu, M., et al., Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano energy, 2016. 22: p. 278-289.

    QR CODE