簡易檢索 / 詳目顯示

研究生: 王鄧安
Wang, Deng An
論文名稱: 老年性黃斑部病變之風險因子:城市固體廢棄物焚化爐飛灰中的多環芳香烴
The Risk Factor of Age-Related Macular Degeneration: Polycyclic Aromatic Hydrocarbons in Fly Ash of Municipal Solid Waste Incinerator
指導教授: 黃鈺軫
Huang, Yuh Jeen
口試委員: 萬磊
Wan, Lei
莊淳宇
Chuang, Chun Yu
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 71
中文關鍵詞: 老年性黃斑部病變多環芳香烴細懸浮微粒
外文關鍵詞: Age-related macular degeneration,, Polycyclic aromatic hydrocarbons,, Fine particulate matters
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 老年性黃斑部病變是造成老年族群失明主因,導致不可逆的中央視力喪失。老年性黃斑部病變的病因非常複雜,基因缺陷、代謝功能與環境因子間的交互作用會慢性地導致老年性黃斑部病變。在疾病的發展過程中,視網膜色素上皮細胞的氧化壓力上升常認為是病變的關鍵,因此,本研究聚焦在一種誘發氧化壓力的環境因子:多環芳香烴碳氫化合物 (polycyclic aromatic hydrocarbons, PAHs)。隨著焚燒大量的城市固體廢棄物,在焚化爐中的不完全燃燒會產生PAHs,PAHs便隨著可吸入性的飛灰粒子被排放到環境中,並且,PAHs具有相當的生物累積性以及高度脂溶性,可能會隨著食物攝入或吸入性粒子暴露到人體中。為了研究吸入性飛灰中多環芳香烴對老年性黃斑部病變的影響,利用DLPI將吸入性飛灰PM2.5-1(直徑2.5-1微米) 由城市廢棄物焚燒飛灰樣品中分離出來,其占總飛灰0.128%(w/w),藉GC-MS定量總多環芳香烴碳氫化合物含量為11.3 ppm。將PM2.5-1及PAHs分別暴露到ARPE-19細胞中,皆引發顯著的氧化壓力上升。此外,在跨上皮電阻測量結果中發現,PM2.5-1及PAH皆會減少ARPE-19細胞層的跨膜電阻,利用免疫螢光染色發現,單層細胞間的緊密連接蛋白ZO-1明顯受到破壞,而導致穿透性上升。進一步地,利用qPCR檢驗暴露PAH後基因表現量的變化,結果導致CCL2、CRP、CXCL1、CXCL12、ITGB2、MMP14、C7等顯著的上調,以及CLU、CFI、C3aR1表現量顯著下降。這些表現量的變化可歸納造成更嚴重的脈絡膜新生血管、發炎反應以及補體過度的活化,這些結果皆指向飛灰中的PAHs會引發或促進老年性黃斑部病變的病情發展。


    Age-related macular degeneration (AMD) is one of common causes of severe loss of vision in elder population. Oxidative stress in retinal pigment epithelium (RPE) plays the principal role in AMD. Considering the bio-accumulative and lipid-solubility, we focus one crucial oxidative stress trigger on environmental pollutants: polycyclic aromatic hydrocarbons (PAHs) in respirable particulate matter, PM2.5-1 (diameter 2.5-1μm), from municipal solid waste (MSW) incinerator. MSW fly ash sample contained 1.795% respirable PM (diameter<10μm), including 0.128% of PM2.5-1, which was classified by Dekati® Low Pressure Impactor. Then, PAHs in PM2.5-1 quantified by GC-MS were 11.3 ppm. To identify if PAHs in PM2.5-1 is a risky factor of AMD, EC50, ROS, transepithelial electrical resistance, immunofluorescence staining and variation of genomic expression were measured. PAHs and PM2.5-1 both induced ROS progressed the oxidative stress in ARPE-19 cells. Moreover, they both interfered the integrity of the tight junction protein, ZO-1, at REP monolayer. On the other hand, our results demonstrated the expression levels of CCL2, CRP, CXCL1, CXCL12, ITGB2, MMP14, and C7 in ARPE-19 cells were up-regulated whereas the levels of CLU, CFI, and C3aR1 were down-regulated after PAHs exposed. These variation of genomic expression was regarded as an indicator of severe CNV, inflammation and uncontrolled complement activity. In conclusion, all findings suggested an association between PAHs exposure and development of AMD.

    Abstract ………………………………………………………………………………………...I Chapter 1 Introduction 1 1.1 BACKGROUND 1 1.2 OBJECTS OF THIS STUDY 2 Chapter 2 Literature Review 3 2.1 POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) 3 2.2 SOURCES OF PAHS 6 2.3 FORMATION OF PAHS 8 2.4 TOXIC MECHANISMS OF PAHS 11 2.5 CLINICAL FEATURES OF AGE-RELATED MACULAR DEGENERATION 14 2.6 THE PATHOPHYSIOLOGY OF AMD 14 2.6.1 Genetics 15 2.6.2 Lipofuscin 16 2.6.3 Drusen 17 2.6.4 Inflammation 18 2.6.5 Choroidal neovascularization 18 2.7 OXIDATIVE STRESS AND AMD 20 2.8 THE ROLE OF COMPONENT IN AMD 22 Chapter 3 Experiment and Method 27 3.1 MATERIALS AND CHEMICALS 27 3.2 SAMPLE SPECIES: MSW FLY ASH PARTICLE 30 3.3 EXPERIMENTAL METHOD 32 3.3.1 Particle size classification and weight distribution 32 3.3.2 Extraction method of PAH 34 3.3.3 GC-MS Instrumentation and Conditions 34 3.3.4 Identification and quantification of PAHs 36 3.3.5 Cell culture 36 3.3.6 Cell viability assays 37 3.3.7 Oxidative stress measurement 37 3.3.8 Transepithelial resistance measurement 38 Chapter 4 Result and Discussion 39 4.1 WEIGHT DISTRIBUTION OF MSW FLY ASH 39 4.2 QUANTITATION OF PAH IN MSW FLY ASH 40 4.3 CYTOTOXICITY TEST 42 4.3.1 Cell viability 42 4.3.2 Oxidation stress 44 4.4 ENVIRONMENTAL FACTOR RENDER ARPE-19 CELL BARRIER INJURY 47 4.4.1 Transepithelial electrical resistance (TER) measurement of ARPE-19 cells 47 4.4.2 Immunofluorescence staining of tight junction protein 48 4.5 PAHS-INDUCED GENE EXPRESSION VARIATION IN ARPE-19 CELLS 50 Chapter 5 Conclusions 53 Reference 54

    [1] Klein R, Peto T, Bird A, Vannewkirk MR. The epidemiology of age-related macular degeneration. American Journal of Ophthalmology 2004;137:486-95.
    [2] Patel M, Chan C-C. Immunopathological aspects of age-related macular degeneration. Seminars in Immunopathology 2008;30:97-110.
    [3] Strauss O. The Retinal Pigment Epithelium in Visual Function. Physiological Reviews 2005;85:845-81.
    [4] van Campagne M, LeCouter J, Yaspan BL, Ye W. Mechanisms of age‐related macular degeneration and therapeutic opportunities. The Journal of Pathology 2014;232:151-64.
    [5] Nowak JZ. Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacological Reports 2006;58:353-63.
    [6] Cerniglia CE. Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol 1984;30:31-71.
    [7] Samanta SK, Singh OV, Jain RK. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends in Biotechnology 2002;20:243-8.
    [8] Stegeman JJ, Schlezinger JJ, Craddock JE, Tillitt DE. Cytochrome P450 1A expression in midwater fishes: potential effects of chemical contaminants in remote oceanic zones. Environmental science & technology 2001;35:54-62.
    [9] Palackal NT, Lee SH, Harvey RG, Blair IA, Penning TM. Activation of polycyclic aromatic hydrocarbon trans-dihydrodiol proximate carcinogens by human aldo-keto reductase (AKR1C) enzymes and their functional overexpression in human lung carcinoma (A549) cells. The Journal of biological chemistry 2002;277:24799-808.
    [10] Kuang D, Zhang W, Deng Q, Zhang X, Huang K, Guan L, et al. Dose-Response Relationships of Polycyclic Aromatic Hydrocarbons Exposure and Oxidative Damage to DNA and Lipid in Coke Oven Workers. Environmental science & technology 2013.
    [11] Bretillon L, Thuret G, Gregoire S, Acar N, Joffre C, Bron AM, et al. Lipid and fatty acid profile of the retina, retinal pigment epithelium/choroid, and the lacrimal gland, and associations with adipose tissue fatty acids in human subjects. Exp Eye Res 2008;87:521-8.
    [12] Holz FG, Sheraidah G, Pauleikhoff D, Bird AC. Analysis of lipid deposits extracted from human macular and peripheral Bruch's membrane. Archives of ophthalmology 1994;112:402-6.
    [13] Nourooz-Zadeh J, Pereira P. Age-related accumulation of free polyunsaturated fatty acids in human retina. Ophthalmic Res 1999;31:273-9.
    [14] Curcio CA, Millican CL, Bailey T, Kruth HS. Accumulation of cholesterol with age in human Bruch's membrane. Investigative ophthalmology & visual science 2001;42:265-74.
    [15] Malek G, Li CM, Guidry C, Medeiros NE, Curcio CA. Apolipoprotein B in cholesterol-containing drusen and basal deposits of human eyes with age-related maculopathy. Am J Pathol 2003;162:413-25.
    [16] McConnell V, Silvestri G. Age-related macular degeneration. The Ulster Medical Journal 2005;74:82-92.
    [17] Janik-Papis K, Ulińska M, Krzyzanowska A, Stoczyńska E, Borucka AI, Woźniak K, et al. [Role of oxidative mechanisms in the pathogenesis of age-related macular degeneration]. Klinika oczna 2009:168-73.
    [18] Nowak JZ, Wiktorowska-Owczarek A. [Neovascularization in ocular tissues: mechanisms and role of proangiogenic and antiangiogenic factors]. Klin Oczna 2004;106:90-7.
    [19] Ravindra K, Sokhi R, Van Grieken R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos Environ 2008;42:2895-921.
    [20] Alves CA. Characterisation of solvent extractable organic constituents in atmospheric particulate matter: an overview. An Acad Bras Cienc 2008;80:21-82.
    [21] 林志忠. 交通源大氣奈米、超細、細及粗微粒組成特性之研究. 2007.
    [22] Dias JR. Handbook of Polycyclic Hydrocarbons, Part A, Benzenoid Hydrocarbons. 1987;30A:86-96.
    [23] Li CK, Kamens RM. THE USE OF POLYCYCLIC AROMATIC-HYDROCARBONS AS SOURCE SIGNATURES IN RECEPTOR MODELING. Atmospheric Environment Part a-General Topics 1993;27:523-32.
    [24] Office of the Federal Registration (OFR) Appendix A: priority pollutants. The U.S. Environmental Protection Agency; 1982.
    [25] Mastral AM, Callen MS. A review an polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environ Sci Technol 2000;34:3051-7.
    [26] Callen MS, de la Cruz MT, Lopez JM, Mastral AM. PAH in airborne particulate matter. Carcinogenic character of PM10 samples and assessment of the energy generation impact. Fuel Process Technol 2011;92:176-82.
    [27] Xiaodong L, Jianhua Y, Mingjiang N, Kefa C. Study on mixing performance of municipal solid waste (MSW) in differential density fluidized beds (FBs). Chemical Engineering Journal 2001;84:161-6.
    [28] Johansson I, van Bavel B. Polycyclic aromatic hydrocarbons in weathered bottom ash from incineration of municipal solid waste. Chemosphere 2003;53:123-8.
    [29] Ferreira C, Ribeiro A, Ottosen L. Possible applications for municipal solid waste fly ash. Journal of Hazardous Materials 2003;96:201-16.
    [30] Sun F, Littlejohn D, David Gibson M. Ultrasonication extraction and solid phase extraction clean-up for determination of US EPA 16 priority pollutant polycyclic aromatic hydrocarbons in soils by reversed-phase liquid chromatography with ultraviolet absorption detection1. Analytica Chimica Acta 1998;364:1-11.
    [31] Ionescu G, Rada EC, Ragazzi M, Mărculescu C, Badea A, Apostol T. Integrated municipal solid waste scenario model using advanced pretreatment and waste to energy processes. Energy Conversion and Management 2013;76:1083-92.
    [32] Moeckel C, Monteith DT, Llewellyn NR, Henrys PA, Pereira MG. Relationship between the concentrations of dissolved organic matter and polycyclic aromatic hydrocarbons in a typical U.K. upland stream. Environmental science & technology 2014;48:130-8.
    [33] Adgate JL, Ramachandran G, Pratt GC, Waller LA, Sexton K. Longitudinal variability in outdoor, indoor, and personal PM2.5 exposure in healthy non-smoking adults. Atmospheric Environment 2003;37:993-1002.
    [34] Miller FJ, Gardner DE, Graham JA, Lee RE, Wilson WE, Bachmann JD. Size Considerations for Establishing a Standard for Inhalable Particles. Journal of the Air Pollution Control Association 1979;29:610-5.
    [35] Ragazzi M, Tirler W, Angelucci G, Zardi D, Rada EC. Management of atmospheric pollutants from waste incineration processes: the case of Bozen. Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA 2013;31:235-40.
    [36] Buonanno G, Stabile L, Avino P, Belluso E. Chemical, dimensional and morphological ultrafine particle characterization from a waste-to-energy plant. Waste Management 2011;31:2253-62.
    [37] Richter H, Howard JB. Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Progress in Energy and Combustion Science 2000;26:565-608.
    [38] Bittner JD, Howard JB. In Particle Carbon: Formation During Combustion. 1981.
    [39] Shukla B, Koshi M. A novel route for PAH growth in HACA based mechanisms. Combustion and Flame 2012;159:3589-96.
    [40] Zhou H, Wu C, Onwudili JA, Meng A, Zhang Y, Williams PT. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions. Waste Manag 2015;36:136-46.
    [41] Manahan SE. Environmental Chemistry. 1994.
    [42] Asmadi M, Kawamoto H, Saka S. Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei. Journal of Analytical and Applied Pyrolysis 2011;92:88-98.
    [43] Asmadi M, Kawamoto H, Saka S. Thermal reactivities of catechols/pyrogallols and cresols/xylenols as lignin pyrolysis intermediates. Journal of Analytical and Applied Pyrolysis 2011;92:76-87.
    [44] Jordan KJ, Suib SL, Koberstein JT. Determination of the Degradation Mechanism from the Kinetic Parameters of Dehydrochlorinated Poly(vinyl chloride) Decomposition. The Journal of Physical Chemistry B 2001;105:3174-81.
    [45] Mastrangelo G, Fadda E, Marzia V. Polycyclic aromatic hydrocarbons and cancer in man. Environmental health perspectives 1996;104:1166-70.
    [46] Burstyn I, Boffetta P, Heederik D, Partanen T, Kromhout H, Svane O, et al. Mortality from obstructive lung diseases and exposure to polycyclic aromatic hydrocarbons among asphalt workers. American journal of epidemiology 2003;158:468-78.
    [47] Armstrong BG, Gibbs G. Exposure-response relationship between lung cancer and polycyclic aromatic hydrocarbons (PAHs). Occupational and environmental medicine 2009;66:740-6.
    [48] Mena S, Ortega A, Estrela JM. Oxidative stress in environmental-induced carcinogenesis. Mutation research 2009;674:36-44.
    [49] Chung KF, Marwick JA. Molecular mechanisms of oxidative stress in airways and lungs with reference to asthma and chronic obstructive pulmonary disease. Annals of the New York Academy of Sciences 2010;1203:85-91.
    [50] Gross M, Steffes M, Jacobs DR, Jr., Yu X, Lewis L, Lewis CE, et al. Plasma F2-isoprostanes and coronary artery calcification: the CARDIA Study. Clinical chemistry 2005;51:125-31.
    [51] Penning TM, Drury JE. Human aldo-keto reductases: Function, gene regulation, and single nucleotide polymorphisms. Archives of biochemistry and biophysics 2007;464:241-50.
    [52] Cavalieri EL, Rogan EG. Central role of radical cations in metabolic activation of polycyclic aromatic hydrocarbons. Xenobiotica; the fate of foreign compounds in biological systems 1995;25:677-88.
    [53] Gelboin HV. Benzo[alpha]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed-function oxidases and related enzymes. Physiol Rev 1980;60:1107-66.
    [54] Smithgall TE, Harvey RG, Penning TM. Regio- and stereospecificity of homogeneous 3 alpha-hydroxysteroid-dihydrodiol dehydrogenase for trans-dihydrodiol metabolites of polycyclic aromatic hydrocarbons. The Journal of biological chemistry 1986;261:6184-91.
    [55] Smithgall TE, Harvey RG, Penning TM. Oxidation of the trans-3,4-dihydrodiol metabolites of the potent carcinogen 7,12-dimethylbenz(a)anthracene and other benz(a)anthracene derivatives by 3 alpha-hydroxysteroid-dihydrodiol dehydrogenase: effects of methyl substitution on velocity and stereochemical course of trans-dihydrodiol oxidation. Cancer research 1988;48:1227-32.
    [56] Smithgall TE, Harvey RG, Penning TM. Spectroscopic identification of ortho-quinones as the products of polycyclic aromatic trans-dihydrodiol oxidation catalyzed by dihydrodiol dehydrogenase. A potential route of proximate carcinogen metabolism. The Journal of biological chemistry 1988;263:1814-20.
    [57] Nisbet IC, LaGoy PK. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory toxicology and pharmacology : RTP 1992;16:290-300.
    [58] Algvere PV, Seregard S. Drusen maculopathy: a risk factor for AMD. Can we prevent visual loss? Acta Ophthalmologica Scandinavica 2003:427-9.
    [59] Bressler NM, Silva JC, Bressler SB, Fine SL, Green RW. Clinicopathologic correlation of drusen and retinal pigment epithelial abnormalities in age-related macular degeneration. 1994. Retina (Philadelphia, Pa) 2005:130-42.
    [60] Fine SL, Berger JW, Maguire MG, Ho AC. Age-related macular degeneration. The New England journal of medicine 2000;342:483-92.
    [61] McConnell V, Silvestri G. Age-related macular degeneration. Ulster Med J 2005;74:82-92.
    [62] Gehrs KM, Anderson DH, Johnson LV, Hageman GS. Age-related macular degeneration--emerging pathogene and therapeutic concepts. Annals of medicine 2006;38:450-71.
    [63] Hogan MJ. Role of the retinal pigment epithelium in macular disease. Transactions - American Academy of Ophthalmology and Otolaryngology American Academy of Ophthalmology and Otolaryngology 1972;76:64-80.
    [64] Campochiaro PA. Ocular neovascularisation and excessive vascular permeability. Expert Opin Biol Th 2004;4:1395-402.
    [65] Das A, McGuire PG. Retinal and choroidal angiogenesis: pathophysiology and strategies for inhibition. Progress in retinal and eye research 2003;22:721-48.
    [66] Nowak JZ. Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol rep 2006.
    [67] Bok D. Evidence for an inflammatory process in age-related macular degeneration gains new support. Proceedings of the National Academy of Sciences of the United States of America 2005;102:7053-4.
    [68] Kopp A, Hebecker M, Svobodova E, Jozsi M. Factor h: a complement regulator in health and disease, and a mediator of cellular interactions. Biomolecules 2012;2:46-75.
    [69] Nilsson UR, Mueller-Eberhard HJ. Isolation of Beta If-Globulin from Human Serum and Its Characterization as the Fifth Component of Complement. The Journal of experimental medicine 1965;122:277-98.
    [70] Rodriguez de Cordoba S, Esparza-Gordillo J, Goicoechea de Jorge E, Lopez-Trascasa M, Sanchez-Corral P. The human complement factor H: functional roles, gene variations and disease associations. Molecular immunology 2004;41:355-67.
    [71] Charbel Issa P, Chong NV, Scholl HP. The significance of the complement system for the pathogenesis of age-related macular degeneration - current evidence and translation into clinical application. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 2011;249:163-74.
    [72] Feeney L, Mixon RN. An in vitro model of phagocytosis in bovine and human retinal pigment epithelium. Exp Eye Res 1976;22:533-48.
    [73] Kennedy CJ, Rakoczy PE, Constable IJ. Lipofuscin of the retinal pigment epithelium: a review. Eye 1995;9 ( Pt 6):763-71.
    [74] Eldred GE, Lasky MR. Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 1993;361:724-6.
    [75] Sparrow JR, Boulton M. RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 2005;80:595-606.
    [76] Warburton S, Southwick K, Hardman RM, Secrest AM, Grow RK, Xin H, et al. Examining the proteins of functional retinal lipofuscin using proteomic analysis as a guide for understanding its origin. Molecular vision 2005;11:1122-34.
    [77] Young RW. Solar radiation and age-related macular degeneration. Survey of ophthalmology 1988;32:252-69.
    [78] Young RW. Pathophysiology of age-related macular degeneration. Survey of ophthalmology 1987;31:291-306.
    [79] Boulton M, Dontsov A, Jarvis-Evans J, Ostrovsky M, Svistunenko D. Lipofuscin is a photoinducible free radical generator. Journal of photochemistry and photobiology B, Biology 1993;19:201-4.
    [80] Gaillard ER, Atherton SJ, Eldred G, Dillon J. Photophysical studies on human retinal lipofuscin. Photochemistry and photobiology 1995;61:448-53.
    [81] Holz FG, Schutt F, Kopitz J, Eldred GE, Kruse FE, Volcker HE, et al. Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Investigative ophthalmology & visual science 1999;40:737-43.
    [82] de Jong PT. Drusen, AMD, and history. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 2015;253:2061-2.
    [83] Anderson DH, Mullins RF, Hageman GS, Johnson LV. A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 2002;134:411-31.
    [84] Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch's membrane interface in aging and age-related macular degeneration. Progress in retinal and eye research 2001;20:705-32.
    [85] Johnson LV, Leitner WP, Staples MK, Anderson DH. Complement activation and inflammatory processes in Drusen formation and age related macular degeneration. Exp Eye Res 2001;73:887-96.
    [86] Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, et al. Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America 2002;99:14682-7.
    [87] Kijlstra A, La Heij E, Hendrikse F. Immunological factors in the pathogenesis and treatment of age-related macular degeneration. Ocular immunology and inflammation 2005;13:3-11.
    [88] Damico F, Gasparin F, Scolari M, Pedral L, Takahashi B. New approaches and potential treatments for dry age-related macular degeneration. Arquivos brasileiros de oftalmologia 2012;75:71-6.
    [89] Wu LH. Study of aging macular degeneration in China. Japanese journal of ophthalmology 1987;31:349-67.
    [90] Klein R, Klein BE, Tomany SC, Cruickshanks KJ. Association of emphysema, gout, and inflammatory markers with long-term incidence of age-related maculopathy. Archives of ophthalmology 2003;121:674-8.
    [91] Klein R, Klein BE, Cruickshanks KJ. The prevalence of age-related maculopathy by geographic region and ethnicity. Progress in retinal and eye research 1999;18:371-89.
    [92] Kazatchkine MD, Fearon DT, Metcalfe DD, Rosenberg RD, Austen KF. Structural determinants of the capacity of heparin to inhibit the formation of the human amplification C3 convertase. The Journal of clinical investigation 1981;67:223-8.
    [93] Mold C, Kingzette M, Gewurz H. C-reactive protein inhibits pneumococcal activation of the alternative pathway by increasing the interaction between factor H and C3b. Journal of immunology 1984;133:882-5.
    [94] Anderson OA, Finkelstein A, Shima DT. A2E Induces IL-1ß Production in Retinal Pigment Epithelial Cells via the NLRP3 Inflammasome. PLoS ONE 2013;8.
    [95] Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. Faseb J 1999;13:9-22.
    [96] Hartnett ME, Lappas A, Darland D, McColm JR, Lovejoy S, D'Amore PA. Retinal pigment epithelium and endothelial cell interaction causes retinal pigment epithelial barrier dysfunction via a soluble VEGF-dependent mechanism. Exp Eye Res 2003;77:593-9.
    [97] Zech JC, Pouvreau I, Cotinet A, Goureau O, Le Varlet B, de Kozak Y. Effect of cytokines and nitric oxide on tight junctions in cultured rat retinal pigment epithelium. Investigative ophthalmology & visual science 1998;39:1600-8.
    [98] Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu HJ, Benedict W, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 1999;285:245-8.
    [99] Stellmach V, Crawford SE, Zhou W. Prevention of ischemia-induced retinopathy by the natural ocular antiangiogenic agent pigment epithelium-derived factor. Proceedings of the … 2001.
    [100] Bouck N. PEDF: anti-angiogenic guardian of ocular function. Trends in molecular medicine 2002.
    [101] Bhutto IA, McLeod DS, Hasegawa T, Kim SY, Merges C, Tong P, et al. Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in aged human choroid and eyes with age-related macular degeneration. Exp Eye Res 2006;82:99-110.
    [102] Ng EW, Adamis AP. Targeting angiogenesis, the underlying disorder in neovascular age-related macular degeneration. Canadian journal of ophthalmology Journal canadien d'ophtalmologie 2005;40:352-68.
    [103] Ohno-Matsui K, Morita I, Tombran-Tink J, Mrazek D, Onodera M, Uetama T, et al. Novel mechanism for age-related macular degeneration: an equilibrium shift between the angiogenesis factors VEGF and PEDF. Journal of cellular physiology 2001;189:323-33.
    [104] Tong J-P, Yao Y-F. Contribution of VEGF and PEDF to choroidal angiogenesis: a need for balanced expressions. Clinical biochemistry 2006;39:267-76.
    [105] Beatty S, Koh H, Phil M, Henson D, Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Survey of ophthalmology 2000;45:115-34.
    [106] Halliwell B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. The American Journal of Medicine 1991.
    [107] Diakowska D, Lewandowski A, Kopec W, Diakowski W, Chrzanowska T. Oxidative DNA damage and total antioxidant status in serum of patients with esophageal squamous cell carcinoma. Hepato-gastroenterology 2007;54:1701-4.
    [108] Chang D, Wang F, Zhao YS, Pan HZ. Evaluation of oxidative stress in colorectal cancer patients. Biomedical and environmental sciences : BES 2008;21:286-9.
    [109] Yoshida R, Ogawa Y, Kasai H. Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine values measured by an ELISA correlated well with measurements by high-performance liquid chromatography with electrochemical detection. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2002;11:1076-81.
    [110] Age-Related Eye Disease Study Research G. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Archives of ophthalmology 2001;119:1417-36.
    [111] Sacca SC, Pascotto A, Camicione P, Capris P, Izzotti A. Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma. Archives of ophthalmology 2005;123:458-63.
    [112] Kau HC, Tsai CC, Lee CF, Kao SC, Hsu WM, Liu JH, et al. Increased oxidative DNA damage, 8-hydroxydeoxy- guanosine, in human pterygium. Eye 2006;20:826-31.
    [113] Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS. Complement factor H polymorphism in age-related macular degeneration. … 2005.
    [114] Tsai CY, Woung LC, Chou P, Yang CS, Sheu MM, Wu JR, et al. The current status of visual disability in the elderly population of Taiwan. Japanese journal of ophthalmology 2005;49:166-72.
    [115] Mitchell P, Smith W, Attebo K, Wang JJ. Prevalence of age-related maculopathy in Australia. The Blue Mountains Eye Study. Ophthalmology 1995;102:1450-60.
    [116] Klein BE, Klein R, Linton KL. Prevalence of age-related lens opacities in a population. The Beaver Dam Eye Study. Ophthalmology 1992;99:546-52.
    [117] Cai J, Nelson KC, Wu M, Sternberg P, Jones DP. Oxidative damage and protection of the RPE. Progress in retinal and eye research 2000;19:205-21.
    [118] Lambris JD, Adamis AP, Zipfel PF, Lauer N, Skerka C. Advances in Experimental Medicine and Biology. Advances in experimental medicine and biology 2010;703:9-24.
    [119] Edwards AO, Ritter R, Abel KJ, Manning A, Panhuysen C, Farrer LA. Complement factor H polymorphism and age-related macular degeneration. Science 2005;308:421-4.
    [120] Noureddine M, Gilbert JR, Schnetz-Boutaud N. Complement factor H variant increases the risk of age-related macular degeneration. … 2005.
    [121] Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI, et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America 2005;102:7227-32.
    [122] Mullins RF, Russell SR, Anderson DH, Hageman GS. Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. Faseb J 2000;14:835-46.
    [123] Klein R, Peto T, Bird A, Vannewkirk MR. The epidemiology of age-related macular degeneration. Am J Ophthalmol 2004;137:486-95.
    [124] Greenfield JR, Samaras K, Jenkins AB, Kelly PJ, Spector TD, Gallimore JR, et al. Obesity is an important determinant of baseline serum C-reactive protein concentration in monozygotic twins, independent of gene influences. Circulation 2004;109:3022-8.
    [125] Wener MH, Daum PR, McQuillan GM. The influence of age, sex, and race on the upper reference limit of serum C-reactive protein concentration. The Journal of rheumatology 2000;27:2351-9.
    [126] Esparza-Gordillo J, Soria JM, Buil A, Almasy L, Blangero J, Fontcuberta J, et al. Gene and environmental factors influencing the human factor H plasma levels. Immunogenes 2004;56:77-82.
    [127] Mullins RF, Aptsiauri N, Hageman GS. Structure and composition of drusen associated with glomerulonephritis: implications for the role of complement activation in drusen biogenesis. Eye 2001;15:390-5.
    [128] Thurman JM, Renner B, Kunchithapautham K, Ferreira VP, Pangburn MK, Ablonczy Z, et al. Oxidative Stress Renders Retinal Pigment Epithelial Cells Susceptible to Complement-mediated Injury. Journal of Biological Chemistry 2009;284:16939-47.
    [129] Zipfel PF, Lauer N, Skerka C. The role of complement in AMD. Adv Exp Med Biol 2010;703:9-24.
    [130] Ingersoll SA, Martin CB, Barnum SR, Martin BK. CNS-specific expression of C3a and C5a exacerbate demyelination severity in the cuprizone model. Molecular immunology 2010;48:219-30.
    [131] Langer HF, Chung KJ, Orlova VV, Choi EY, Kaul S, Kruhlak MJ, et al. Complement-mediated inhibition of neovascularization reveals a point of convergence between innate immunity and angiogenesis. Blood 2010;116:4395-403.
    [132] Markiewski MM, DeAngelis RA, Strey CW, Foukas PG, Gerard C, Gerard N, et al. The regulation of liver cell survival by complement. Journal of immunology 2009;182:5412-8.
    [133] Mukherjee P, Pasinetti GM. The role of complement anaphylatoxin C5a in neurodegeneration: implications in Alzheimer's disease. J Neuroimmunol 2000;105:124-30.
    [134] Rahpeymai Y, Hietala MA, Wilhelmsson U, Fotheringham A, Davies I, Nilsson AK, et al. Complement: a novel factor in basal and ischemia-induced neurogenesis. EMBO J 2006;25:1364-74.
    [135] Shinjyo N, Stahlberg A, Dragunow M, Pekny M, Pekna M. Complement-derived anaphylatoxin C3a regulates in vitro differentiation and migration of neural progenitor cells. Stem Cells 2009;27:2824-32.
    [136] Yu M, Zou W, Peachey NS, McIntyre TM, Liu J. A novel role of complement in retinal degeneration. Investigative ophthalmology & visual science 2012;53:7684-92.
    [137] Fritz IB, Burdzy K, Setchell B, Blaschuk O. Ram rete testis fluid contains a protein (clusterin) which influences cell-cell interactions in vitro. Biol Reprod 1983;28:1173-88.
    [138] Tung PS, Burdzy K, Wong K, Fritz IB. Competition between cell-substratum interactions and cell-cell interactions. J Cell Physiol 1992;152:410-21.
    [139] Kim JH, Kim JH, Yu YS, Min BH, Kim KW. Protective effect of clusterin on blood-retinal barrier breakdown in diabetic retinopathy. Investigative ophthalmology & visual science 2010;51:1659-65.
    [140] Pflugfelder SC, Farley W, Luo L, Chen LZ, de Paiva CS, Olmos LC, et al. Matrix metalloproteinase-9 knockout confers resistance to corneal epithelial barrier disruption in experimental dry eye. Am J Pathol 2005;166:61-71.
    [141] Yi X, Wang Y, Yu FS. Corneal epithelial tight junctions and their response to lipopolysaccharide challenge. Investigative ophthalmology & visual science 2000;41:4093-100.
    [142] Kiaei M, Kipiani K, Calingasan NY, Wille E, Chen J, Heissig B, et al. Matrix metalloproteinase-9 regulates TNF-alpha and FasL expression in neuronal, glial cells and its absence extends life in a transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 2007;205:74-81.
    [143] Schonbeck U, Mach F, Libby P. Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing. Journal of immunology 1998;161:3340-6.
    [144] Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 2000;14:163-76.
    [145] Khandhadia S, Cipriani V, Yates JR, Lotery AJ. Age-related macular degeneration and the complement system. Immunobiology 2012;217:127-46.
    [146] Alexander P, Gibson J, Cree AJ, Ennis S, Lotery AJ. Complement factor I and age-related macular degeneration. Molecular vision 2014;20:1253-7.
    [147] Wang J, Ohno-Matsui K, Yoshida T, Kojima A, Shimada N, Nakahama K, et al. Altered function of factor I caused by amyloid beta: implication for pathogenesis of age-related macular degeneration from Drusen. Journal of immunology 2008;181:712-20.
    [148] Ennis S, Gibson J, Cree AJ, Collins A, Lotery AJ. Support for the involvement of complement factor I in age-related macular degeneration. Eur J Hum Genet 2010;18:15-6.
    [149] Seddon JM, Yu Y, Miller EC, Reynolds R, Tan PL, Gowrisankar S, et al. Rare variants in CFI, C3 and C9 are associated with high risk of advanced age-related macular degeneration. Nat Genet 2013;45:1366-70.
    [150] Fagerness JA, Maller JB, Neale BM, Reynolds RC, Daly MJ, Seddon JM. Variation near complement factor I is associated with risk of advanced AMD. Eur J Hum Genet 2009;17:100-4.
    [151] Kondo N, Bessho H, Honda S, Negi A. Additional evidence to support the role of a common variant near the complement factor I gene in susceptibility to age-related macular degeneration. Eur J Hum Genet 2010;18:634-5.
    [152] Qian D, Kan M, Weng X, Huang Y, Zhou C, Yu G, et al. Common variant rs10033900 near the complement factor I gene is associated with age-related macular degeneration risk in Han Chinese population. Eur J Hum Genet 2014;22:1417-9.
    [153] van de Ven JP, Nilsson SC, Tan PL, Buitendijk GH, Ristau T, Mohlin FC, et al. A functional variant in the CFI gene confers a high risk of age-related macular degeneration. Nat Genet 2013;45:813-7.
    [154] van Lookeren Campagne M, Strauss EC, Yaspan BL. Age-related macular degeneration: Complement in action. Immunobiology 2015.
    [155] Barroso S, Rieubland C, Jose alvarez A, Lopez-Trascasa M, Bart PA, Nunez-Roldan A, et al. Molecular defects of the C7 gene in two patients with complement C7 deficiency. Immunology 2006;118:257-60.
    [156] Nishizaka H, Horiuchi T, Zhu ZB, Fukumori Y, Volanakis JE. Gene bases of human complement C7 deficiency. Journal of immunology 1996;157:4239-43.
    [157] Schirinzi R, Lantin JP, Fremeaux-Bacchi V, Schifferli JA, Trendelenburg M. [Combined-heterozygous deficiency of complement C7 in a patient with recurrent meningitis]. Med Klin (Munich) 2006;101:655-8.
    [158] Lueck K, Hennig M, Lommatzsch A, Pauleikhoff D, Wasmuth S. Complement and UV-irradiated photoreceptor outer segments increase the cytokine secretion by retinal pigment epithelial cells. Investigative ophthalmology & visual science 2012;53:1406-13.
    [159] Wang Y, Bian ZM, Yu WZ, Yan Z, Chen WC, Li XX. Induction of interleukin-8 gene expression and protein secretion by C-reactive protein in ARPE-19 cells. Exp Eye Res 2010;91:135-42.
    [160] Mitta VP, Christen WG, Glynn RJ, Semba RD, Ridker PM, Rimm EB, et al. C-reactive protein and the incidence of macular degeneration: pooled analysis of 5 cohorts. JAMA Ophthalmol 2013;131:507-13.
    [161] Jabbarpoor Bonyadi MH, Mohammadian T, Bonyadi M, Soheilian M, Moein H, Yaseri M. Evaluation of C-reactive protein and CC-cytokine ligand 2 polymorphism interaction for age-related macular degeneration. Ophthalmic Genet 2016:1-3.
    [162] Zacho J, Tybjaerg-Hansen A, Jensen JS, Grande P, Sillesen H, Nordestgaard BG. Geneally elevated C-reactive protein and ischemic vascular disease. The New England journal of medicine 2008;359:1897-908.
    [163] Dehghan A, Kardys I, de Maat MP, Uitterlinden AG, Sijbrands EJ, Bootsma AH, et al. Gene variation, C-reactive protein levels, and incidence of diabetes. Diabetes 2007;56:872-8.
    [164] Erlinger TP, Platz EA, Rifai N, Helzlsouer KJ. C-reactive protein and the risk of incident colorectal cancer. JAMA 2004;291:585-90.
    [165] Kikuchi M, Nakamura M, Ishikawa K, Suzuki T, Nishihara H, Yamakoshi T, et al. Elevated C-reactive protein levels in patients with polypoidal choroidal vasculopathy and patients with neovascular age-related macular degeneration. Ophthalmology 2007;114:1722-7.
    [166] van Hecke MV, Dekker JM, Nijpels G, Moll AC, Heine RJ, Bouter LM, et al. Inflammation and endothelial dysfunction are associated with retinopathy: the Hoorn Study. Diabetologia 2005;48:1300-6.
    [167] Seddon JM, Gensler G, Milton RC, Klein ML, Rifai N. Association between C-reactive protein and age-related macular degeneration. JAMA 2004;291:704-10.
    [168] Khreiss T, Jozsef L, Potempa LA, Filep JG. Conformational rearrangement in C-reactive protein is required for proinflammatory actions on human endothelial cells. Circulation 2004;109:2016-22.
    [169] Wang Q, Zhu X, Xu Q, Ding X, Chen YE, Song Q. Effect of C-reactive protein on gene expression in vascular endothelial cells. Am J Physiol Heart Circ Physiol 2005;288:H1539-45.
    [170] Enjoji M, Nakamuta M, Yamaguchi K, Ohta S, Kotoh K, Fukushima M, et al. Clinical significance of serum levels of vascular endothelial growth factor and its receptor in biliary disease and carcinoma. World J Gastroenterol 2005;11:1167-71.
    [171] Robbie SJ, Georgiadis A, Barker SE, Duran Y, Smith AJ, Ali RR, et al. Enhanced Ccl2-Ccr2 signaling drives more severe choroidal neovascularization with aging. Neurobiol Aging 2016;40:110-9.
    [172] Vessey KA, Greferath U, Jobling AI, Phipps JA, Ho T, Waugh M, et al. Ccl2/Cx3cr1 knockout mice have inner retinal dysfunction but are not an accelerated model of AMD. Investigative ophthalmology & visual science 2012;53:7833-46.
    [173] Ramkumar HL, Tuo J, Shen de F, Zhang J, Cao X, Chew EY, et al. Nutrient supplementation with n3 polyunsaturated fatty acids, lutein, and zeaxanthin decrease A2E accumulation and VEGF expression in the retinas of Ccl2/Cx3cr1-deficient mice on Crb1rd8 background. J Nutr 2013;143:1129-35.
    [174] Falk MK, Singh A, Faber C, Nissen MH, Hviid T, Sorensen TL. CX3CL1/CX3CR1 and CCL2/CCR2 chemokine/chemokine receptor complex in patients with AMD. PLoS One 2014;9:e112473.
    [175] Jonas JB, Tao Y, Neumaier M, Findeisen P. Monocyte chemoattractant protein 1, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 in exudative age-related macular degeneration. Archives of ophthalmology 2010;128:1281-6.
    [176] Espinosa-Heidmann DG, Suner IJ, Hernandez EP, Monroy D, Csaky KG, Cousins SW. Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Investigative ophthalmology & visual science 2003;44:3586-92.
    [177] Luhmann UFO, Ali RR. Local Vs. Systemic Mononuclear Phagocytes in Age-Related Macular Degeneration and Their Regulation by CCL2–CCR2 and CX3CL1–CX3CR1 Chemokine Signalling. In: LaVail MM, Ash DJ, Anderson ER, Hollyfield GJ, Grimm C, editors. Retinal Degenerative Diseases. Boston, MA: Springer US; 2012. p. 17-22.
    [178] Sakurai E, Anand A, Ambati BK, van Rooijen N, Ambati J. Macrophage depletion inhibits experimental choroidal neovascularization. Investigative ophthalmology & visual science 2003;44:3578-85.
    [179] Tsutsumi-Miyahara C, Sonoda KH, Egashira K, Ishibashi M, Qiao H, Oshima T, et al. The relative contributions of each subset of ocular infiltrated cells in experimental choroidal neovascularisation. Br J Ophthalmol 2004;88:1217-22.
    [180] Ambati J, Anand A, Fernandez S, Sakurai E, Lynn BC, Kuziel WA, et al. An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 2003;9:1390-7.
    [181] Zhou J, Pham L, Zhang N, He S, Gamulescu MA, Spee C, et al. Neutrophils promote experimental choroidal neovascularization. Molecular vision 2005;11:414-24.
    [182] Grossniklaus HE, Ling JX, Wallace TM, Dithmar S, Lawson DH, Cohen C, et al. Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization. Molecular vision 2002;8:119-26.
    [183] Yamani MH, Ratliff NB, Cook DJ, Tuzcu EM, Yu Y, Hobbs R, et al. Peritransplant ischemic injury is associated with up-regulation of stromal cell-derived factor-1. J Am Coll Cardiol 2005;46:1029-35.
    [184] Nanki T, Hayashida K, El-Gabalawy HS, Suson S, Shi K, Girschick HJ, et al. Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T cell accumulation in rheumatoid arthritis synovium. Journal of immunology 2000;165:6590-8.
    [185] Bhutto IA, McLeod DS, Merges C, Hasegawa T, Lutty GA. Localisation of SDF-1 and its receptor CXCR4 in retina and choroid of aged human eyes and in eyes with age related macular degeneration. Br J Ophthalmol 2006;90:906-10.
    [186] Chan CC, Shen D, Hackett JJ, Buggage RR, Tuaillon N. Expression of chemokine receptors, CXCR4 and CXCR5, and chemokines, BLC and SDF-1, in the eyes of patients with primary intraocular lymphoma. Ophthalmology 2003;110:421-6.
    [187] Butler JM, Guthrie SM, Koc M, Afzal A, Caballero S, Brooks HL, et al. SDF-1 is both necessary and sufficient to promote proliferative retinopathy. The Journal of clinical investigation 2005;115:86-93.
    [188] Guerin E, Sheridan C, Assheton D, Kent D, Wong D, Grant M, et al. SDF1-alpha is associated with VEGFR-2 in human choroidal neovascularisation. Microvasc Res 2008;75:302-7.
    [189] Zhang ZX, Wang YS, Shi YY, Hou HY, Zhang C, Cai Y, et al. Hypoxia specific SDF-1 expression by retinal pigment epithelium initiates bone marrow-derived cells to participate in Choroidal neovascularization in a laser-induced mouse model. Curr Eye Res 2011;36:838-49.
    [190] Cai Y, Li X, Wang YS, Shi YY, Ye Z, Yang GD, et al. Hyperglycemia promotes vasculogenesis in choroidal neovascularization in diabetic mice by stimulating VEGF and SDF-1 expression in retinal pigment epithelial cells. Exp Eye Res 2014;123:87-96.
    [191] Grierson R, Meyer-Rusenberg B, Kunst F, Berna MJ, Richard G, Thill M. Endothelial progenitor cells and plasma vascular endothelial growth factor and stromal cell-derived factor-1 during ranibizumab treatment for neovascular age-related macular degeneration. J Ocul Pharmacol Ther 2013;29:530-8.
    [192] Park DW, Ryu HS, Choi DS, Park YH, Chang KH, Min CK. Localization of matrix metalloproteinases on endometrial cancer cell invasion in vitro. Gynecol Oncol 2001;82:442-9.
    [193] Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 2006;69:562-73.
    [194] Nagase H, Woessner JF, Jr. Matrix metalloproteinases. The Journal of biological chemistry 1999;274:21491-4.
    [195] Steen B, Sejersen S, Berglin L, Seregard S, Kvanta A. Matrix metalloproteinases and metalloproteinase inhibitors in choroidal neovascular membranes. Investigative ophthalmology & visual science 1998;39:2194-200.
    [196] Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003;92:827-39.
    [197] Wright JK, Cawston TE, Hazleman BL. Transforming growth factor beta stimulates the production of the tissue inhibitor of metalloproteinases (TIMP) by human synovial and skin fibroblasts. Biochim Biophys Acta 1991;1094:207-10.
    [198] Deryugina EI, Bourdon MA, Reisfeld RA, Strongin A. Remodeling of collagen matrix by human tumor cells requires activation and cell surface association of matrix metalloproteinase-2. Cancer research 1998;58:3743-50.
    [199] Marin-Castano ME, Csaky KG, Cousins SW. Nonlethal oxidant injury to human retinal pigment epithelium cells causes cell membrane blebbing but decreased MMP-2 activity. Investigative ophthalmology & visual science 2005;46:3331-40.
    [200] Chau KY, Sivaprasad S, Patel N, Donaldson TA, Luthert PJ, Chong NV. Plasma levels of matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9) in age-related macular degeneration. Eye 2007;21:1511-5.
    [201] Zhuge Y, Xu J. Rac1 mediates type I collagen-dependent MMP-2 activation. role in cell invasion across collagen barrier. The Journal of biological chemistry 2001;276:16248-56.
    [202] Marin-Castano ME, Striker GE, Alcazar O, Catanuto P, Espinosa-Heidmann DG, Cousins SW. Repetitive nonlethal oxidant injury to retinal pigment epithelium decreased extracellular matrix turnover in vitro and induced sub-RPE deposits in vivo. Investigative ophthalmology & visual science 2006;47:4098-112.
    [203] Elliot SJ, Catanuto P, Espinosa-Heidmann DG, Fernandez P, Hernandez E, Saloupis P, et al. Estrogen receptor beta protects against in vivo injury in RPE cells. Exp Eye Res 2010;90:10-6.
    [204] Alcazar O, Cousins SW, Marin-Castano ME. MMP-14 and TIMP-2 overexpression protects against hydroquinone-induced oxidant injury in RPE: implications for extracellular matrix turnover. Investigative ophthalmology & visual science 2007;48:5662-70.
    [205] Chong NH, Keonin J, Luthert PJ, Frennesson CI, Weingeist DM, Wolf RL, et al. Decreased thickness and integrity of the macular elastic layer of Bruch's membrane correspond to the distribution of lesions associated with age-related macular degeneration. Am J Pathol 2005;166:241-51.
    [206] Kwak N, Okamoto N, Wood JM, Campochiaro PA. VEGF is major stimulator in model of choroidal neovascularization. Investigative ophthalmology & visual science 2000;41:3158-64.
    [207] Schwesinger C, Yee C, Rohan RM, Joussen AM, Fernandez A, Meyer TN, et al. Intrachoroidal neovascularization in transgenic mice overexpressing vascular endothelial growth factor in the retinal pigment epithelium. Am J Pathol 2001;158:1161-72.
    [208] Nita M, Strzalka-Mrozik B, Grzybowski A, Mazurek U, Romaniuk W. Age-related macular degeneration and changes in the extracellular matrix. Med Sci Monit 2014;20:1003-16.
    [209] Sakurai E, Taguchi H, Anand A, Ambati BK, Gragoudas ES, Miller JW, et al. Targeted disruption of the CD18 or ICAM-1 gene inhibits choroidal neovascularization. Investigative ophthalmology & visual science 2003;44:2743-9.
    [210] Polichetti G, Cocco S, Spinali A, Trimarco V, Nunziata A. Effects of particulate matter (PM10, PM2.5 and PM1) on the cardiovascular system. Toxicology 2009;261:1-8.
    [211] Delfino RJ, Sioutas C, Malik S. Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environ Health Persp 2005;113:934-46.
    [212] Utell MJ, Frampton MW. Acute health effects of ambient air pollution: The ultrafine particle hypothesis. J Aerosol Med 2000;13:355-9.
    [213] Risom L, Moller P, Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mutation research 2005;592:119-37.
    [214] Sorensen M, Autrup H, Moller P, Hertel O, Jensen SS, Vinzents P, et al. Linking exposure to environmental pollutants with biological effects. Mutation research 2003;544:255-71.
    [215] Mehta M, Chen LC, Gordon T, Rom W, Tang MS. Particulate matter inhibits DNA repair and enhances mutagenesis. Mutation research 2008;657:116-21.
    [216] Cai J, Nelson KC, Wu M, Sternberg P, Jr., Jones DP. Oxidative damage and protection of the RPE. Progress in retinal and eye research 2000;19:205-21.
    [217] Chan D. Cigarette smoking and age-related macular degeneration. Optom Vis Sci 1998;75:476-84.
    [218] Bird AC, Bressler NM, Bressler SB, Chisholm IH, Coscas G, Davis MD, et al. An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group. Survey of ophthalmology 1995;39:367-74.
    [219] Cruickshanks KJ, Klein R, Klein BE. Sunlight and age-related macular degeneration. The Beaver Dam Eye Study. Archives of ophthalmology 1993;111:514-8.
    [220] Thurman JM, Holers VM. The central role of the alternative complement pathway in human disease. Journal of immunology 2006;176:1305-10.
    [221] Ablonczy Z, Crosson CE. VEGF modulation of retinal pigment epithelium resistance. Experimental Eye Research 2007;85:762-71.
    [222] Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res 1996;62:155-69.
    [223] Geisen P, McColm JR, King BM, Hartnett ME. Characterization of barrier properties and inducible VEGF expression of several types of retinal pigment epithelium in medium-term culture. Curr Eye Res 2006;31:739-48.
    [224] Miyamoto N, de Kozak Y, Jeanny JC, Glotin A, Mascarelli F, Massin P, et al. Placental growth factor-1 and epithelial haemato-retinal barrier breakdown: potential implication in the pathogenesis of diabetic retinopathy. Diabetologia 2007;50:461-70.
    [225] Choi YK, Kim JH, Kim WJ, Lee HY, Park JA, Lee SW, et al. AKAP12 regulates human blood-retinal barrier formation by downregulation of hypoxia-inducible factor-1alpha. J Neurosci 2007;27:4472-81.
    [226] Kim JH, Kim JH, Yu YS, Min BH, Kim KW. The role of clusterin in retinal development and free radical damage. Br J Ophthalmol 2007;91:1541-6.
    [227] Kim JH, Yu YS, Kim JH, Kim KW, Min BH. The role of clusterin in in vitro ischemia of human retinal endothelial cells. Curr Eye Res 2007;32:693-8.
    [228] Sakakibara A, Furuse M, Saitou M, Ando-Akatsuka Y, Tsukita S. Possible involvement of phosphorylation of occludin in tight junction formation. J Cell Biol 1997;137:1393-401.
    [229] Tranos PG, Wickremasinghe SS, Stangos NT, Topouzis F, Tsinopoulos I, Pavesio CE. Macular edema. Survey of ophthalmology 2004;49:470-90.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE