研究生: |
賴柏丞 Lai, Po-Chen |
---|---|
論文名稱: |
利用掠角X光小角度散射法研究規則孔洞二氧化鈦薄膜結構 Grazing-Incident Small-Angle X-ray Scattering Studies on the Structure of Ordered Mesoporous Titanium Dioxide Film |
指導教授: |
林滄浪
Lin, Tsang-Lang |
口試委員: |
王本成
Wang, Pen-Cheng 陳燦耀 Chen, Tsan-Yao |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 多孔洞 、二氧化鈦 、軟模板 、掠角小角度散射 、溶膠凝膠 |
外文關鍵詞: | mesoporous, TiO2, soft-template, sol-gel, GISAXS |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來多孔洞二氧化鈦材料陸續都有人們成功的合成出來,且在各領域也有長足的應用,但是規則的多孔洞二氧化鈦薄膜並不易製備。本研究以掠角小角度散射(GISAXS)分析不同的合成參數對於合成製備規則孔洞二氧化鈦薄膜材料之結構影響,在此使用溶膠凝膠法合成二氧化鈦材料並以高分子Pluronic P123為合成中所使用的軟模板,溶膠凝膠法裡水解與縮合速率扮演了結構改變非常重要的角色,透過使用蒸發誘導自組裝法(EISA method)使反應速率能與模板形成之速率做配合,達到不同結構,為此本研究改變了可以影響水解縮和反應的因素及條件如前驅物的種類、鹽酸濃度和溼度,而在模板方面也改變Pluronic P123濃度使其成型的速率與水解縮和反應做搭配。從實驗結果中也可以知到在Pluronic P123濃度為酒精溶劑10 wt%,且HCl/TTIP 莫耳比0.5的條件下能夠產生規則孔洞的二氧化鈦材料,形成之結構為平躺於矽基板表面的六方堆積結構(Hexagonal),六角形邊的長度(Unit cell constant) a值為11nm,隨著Pluronic P123濃度的增加結構漸偏向於層狀堆疊的狀態(d = 9.81 nm),此結果於Pluronic P123隨濃度增加之聚集結構變化相圖相似。在同一種模板溶液條件下改變施加的鹽酸量對於結構也會有很大的影響,濃度從高到低會形成的結構分別為球狀堆積成的柱狀結構(Cylinder)(d =14.61 nm )、柱狀體排列成的六方堆積(Hexagonal)(a = 11 nm)及最後一層層堆疊出的層狀結構(Lamella)(d = 9 ~11 nm),值得一提的是這裡的柱狀堆積結構是垂直於基板表面,而六方堆積中的柱狀體則是平躺在矽基板上的。在改變了前驅物Ti(OBu)4後,也可以看到相似的結果,但是在六方堆積的結構中也摻雜了一些層狀結構在其中,因為水解速率較慢的原因使得模板可以形成較高濃度的結構,在使用EISA方法的過程中控制實驗於室溫下相對濕度50%和30%進行,從發現在當Pluronic P123濃度在5 wt%時兩者沒有太大差異,10 wt%時相對濕度30%的Hexagonal結構中也出現混有一些層狀結構的現象,當Pluronic P123濃度提到20 wt%時可以發現低濕度條件下,形成之Lamella結構的時間早於濕度較高的實驗。
In this study, the effect of the synthesis parameters on the structure of the porous titanium dioxide thin films were investigated by Grazing-Incident Small-Angle X-ray Scattering(GISAXS). Sol-gel method was employed in this study to synthesize the porous titanium dioxide thin films using the polymer Pluronic P123 as the soft template. The hydrolysis and condensation rate of the precursor used in the sol-gel method play very important roles in controlling the synthesized structure. It is necessary to control these rates to allow the formation of ordered template structure. It is often need to use the evaporation-induced self-assembly method (EISA method) to successfully synthesize ordered porous titanium dioxide thin films. The factors affecting the hydrolysis and condensation reaction, such as the type of precursors, the concentration of hydrochloric acid, the humidity, and the Pluronic P123 concentration, were varied in this study. At Pluronic P123 concentration 10 wt%, and HCl/TTIP molar ratio 0.5, it was found that the synthesized titanium dioxide thin film possess hexagonal stacking structure, lying parallel to the silicon substrate surface with a unit cell constant of 11 nm. At higher P123 concentrations or higher acid conditions, it was found that the hexagonal structure is replaced by the lamellar structure.
These findings suggest that the synthesized structures follow closely with the phase diagram of P123.
1. Beck, J. S.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenkert, J. L. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. 1992.
2. Kresge, C. T.; Leonwicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Order mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992.
3. Davis, M. E. Ordered porous materials for emerging applications. Nature 2002.
4. Beck, J. S.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenkert, J. L. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. AM. CHEM. SOC 1992.
5. Crepaldi, E. L.; Soler-Illia, Galo J. de A. A.; Grosso, D.; Cagnol, F.; Ribot, F.; Sanchez, C. Controlled Formation of Highly Organized Mesoporous Titania Thin Films: From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2. J. AM. CHEM. SOC. 2003.
6. Liu, K.; Fu, H.; Shi, K.; Xiao, F.; Jing, L.; Xin, B. Preparation of Large-Pore Mesoporous Nanocrystalline TiO2 Thin Films with Tailored Pore Diameters. American Chemical Society 2005.
7. Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews 2007, 11 (3), 401-425.
8. Kamari, Y.; Ghiaci, M. Preparation and characterization of ibuprofen/modified chitosan/TiO 2 hybrid composite as a controlled drug-delivery system. Microporous and Mesoporous Materials 2016, 234, 361-369.
9. Zukalova, M.; Zukal, A.; Kavan, L.; Nazeeruddin, M. K.; Liska, P.; Gratzel, M. Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano letters 2005, 5 (9), 1789-92.
10. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells. American Chemical Society 2005.
11. Sreethawong, T.; Suzuki, Y.; Yoshikawa, S. Synthesis, characterization, and photocatalytic activity for hydrogen evolution of nanocrystalline mesoporous titania prepared by surfactant-assisted templating sol–gel process. Journal of Solid State Chemistry 2005, 178 (1), 329-338.
12. Ichikawa, S.; Doi, R. Photoelectrocatalytic hydrogen production from water on transparent thin film titania of different crystal structures and quantum efficiency characteristics. Thin Solid Films 1997.
13. Lakshminarasimhan, N.; Bae, E.; Choi, W. Enhanced Photocatalytic Production of H2 on Mesoporous TiO2 Prepared by Template-Free Method: Role of Interparticle Charge Transfer. J. Phys. Chem. C 2007.
14. Ghedini, E.; Signoretto, M.; Pinna, F.; Crocellà, V.; Bertinetti, L.; Cerrato, G. Controlled release of metoprolol tartrate from nanoporous silica matrices. Microporous and Mesoporous Materials 2010, 132 (1-2), 258-267.
15. Park, S. W.; Lee, D.; Choi, Y. S.; Jeon, H. B.; Lee, C. H.; Moon, J. H.; Kwon, Il K. Mesoporous TiO2 implants for loading high dosage of antibacterial agent. Applied Surface Science 2014, 303, 140-146.
16. Signoretto, M.; Ghedini, E.; Nichele, V.; Pinna, F.; Crocellà, V.; Cerrato, G. Effect of textural properties on the drug delivery behaviour of nanoporous TiO2 matrices. Microporous and Mesoporous Materials 2011, 139 (1-3), 189-196.
17. Song, Y. Y.; Stein, F. S.; Bauer, S.; Schmuki, P. Amphiphilic TiO2 Nanotube Arrays: An Actively Controllable Drug Delivery System. J. AM. CHEM. SOC 2009.
18. Shrestha, N. K.; Macak, J. M.; Schmidt-Stein, F.; Hahn, R.; Mierke, C. T.; Fabry, B.; Schmuki, P. Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. Angew Chem Int Ed Engl 2009, 48 (5), 969-72.
19. Pan, J. H.; Zhao, X. S.; Lee, W. I. Block copolymer-templated synthesis of highly organized mesoporous TiO2-based films and their photoelectrochemical applications. Chemical Engineering Journal 2011, 170 (2-3), 363-380.
20. Yang, P.; Deng, T.; Zhao, D.; Feng, P.; Pine, D.; Chmelka, B. F.; Whitesides, G. M.; Stucky, G. D. Hierarchically Ordered Oxides. SCIENCE 1998.
21. Soni S. S.; Brotons, G.; Bellour, M.; Narayanan, T.; Gibaud, A. Quantitative SAXS Analysis of the P123/Water/Ethanol Ternary Phase Diagram. J. Phys. Chem. B 2006.
22. Luca, V.; Djajanti, S.; Howe, R. F. Structural and Electronic Properties of Sol-Gel Titanium Oxides Studied by X-ray Absorption Spectroscopy. J. Phys. Chem. B 1998.
23. BULENT, E.; YOLDAS Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters. JOURNAL OF MATERIALS SCIENCE 1986.
24. Mahoney, L.; Koodali, R. T. Versatility of Evaporation-Induced Self-Assembly (EISA) Method for Preparation of Mesoporous TiO2 for Energy and Environmental Applications. Materials 2014, 7 (4), 2697-2746.
25. Li, W.; Wu, Z.; Wang, J.; Elzatahry, A. A.; Zhao, D. A Perspective on Mesoporous TiO2Materials. Chemistry of Materials 2014, 26 (1), 287-298.
26. Antonelli, D. M.; Ying, J. Y. Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol–Gel method. Angewandte Chemie 1995.
27. Grosso, D.; Babonneau, F.; Sanchez C.; Balkenende, R. Highly Organized Mesoporous Titania Thin Films Showing Mono Oriented 2D Hexagonal Channels. Advanced Materials 2001.
28. Crepaldi, E. L.; Soler-Illia, Galo J. de A. A.; Grosso, D.; Cagnol, F.; Ribot, F.; Sanchez, C. Controlled Formation of Highly Organized Mesoporous Titania Thin Films: From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2. J. AM. CHEM. SOC 2003.
29. Hung, I. M.; Wang, Y.; Huang, C. F.; Fan, Y. S.; Han, Y. J.; Peng, H. W. Effects of templating surfactant concentrations on the mesostructure of ordered mesoporous anatase TiO2 by an evaporation-induced self-assembly method. Journal of the European Ceramic Society 2010, 30 (10), 2065-2072.
30. Das, S.; Wu, Q.; Garlapalli, R. K.; Nagpure, S.; Strzalka, J.; Jiang, Z.; Rankin, S. E. In-Situ GISAXS Investigation of Pore Orientation Effects on the Thermal Transformation Mechanism in Mesoporous Titania Thin Films. The Journal of Physical Chemistry C 2014, 118 (2), 968-976.
31. Grosso, D.; Babonneau, F.; Sanchez C.; Balkenende, R. Highly Organized Mesoporous Titania Thin Films Showing Mono-Oriented 2D Hexagonal Channels. Adv. Mater. 2001.