研究生: |
王清海 Tsing-hai Wang |
---|---|
論文名稱: |
利用平流延散管柱實驗評估硒銫在花崗岩與石英砂的傳輸特性 Assessment of Se and Cs transport behavior in granite and quartz by advection-dispersion column experiments |
指導教授: |
許俊男
Chun-Nan Hsu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 151 |
中文關鍵詞: | 硒 、銫 、花崗岩 、石英砂 、平流延散 、化學系列萃取 |
外文關鍵詞: | selenium, cesium, granite, quartz, advection-dispersion, chemical sequential extraction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中 文 摘 要
本論文的主要目的是藉由實驗及模式的建立,探討硒銫在粉碎花崗岩與石英砂中的平流延散行為,並且由三重複實驗數據的分析結果顯示,模擬出具有放射性的硒銫核種的平流延散模式。本研究包含了平流延散管柱實驗、硒銫破出曲線的模擬和批次實驗。其中所有的液相皆為合成地下水及合成海水。
在平流延散管柱實驗中,主要是要觀察硒銫在花崗岩與石英砂中的平流延散行為。結果顯示,花崗岩對於硒銫有著遲滯的能力;而四價硒的平流延散行為不受到離子強度的影響,因此花崗岩對於四價硒在合成地下水與合成海水環境下的遲滯因數都在4左右。銫的傳輸行為則會受到離子強度的影響,因此在合成地下水環境下,花崗岩對於銫的遲滯因數都在4左右,相對的,在合成海水環境下,遲滯因數降到只有1左右。而石英砂對於硒銫都沒有遲滯的能力,因此無論在合成地下水或是合成海水環境下,石英砂對硒銫的遲滯因數都在1左右。在硒銫破出曲線模擬部分,藉由運用LEHGC模式以Kd模式模擬,將花崗岩與石英砂對於硒銫的遲滯能力加以數據化。模擬結果顯示,花崗岩對於四價硒在合成地下水與合成海水中的收附比例為0.80與0.81;在合成地下水中,花崗岩對於銫的收附比例為0.80,而在合成海水環境下,收附比率為0。而石英砂對硒銫的收附比率,不管在合成地下水或是合成海水環境下都是0。
在批次實驗中,包含硒銫平衡批次實驗及四價硒的系列萃取實驗,主要是觀察在花崗岩與石英砂達到收附平衡時候,其Kd值與流延散管柱實驗所求取的Kd值的差異。結果顯示,利用批次實驗法所求得的花崗岩對於硒銫的Kd值都明顯大於平流延散行為所求取的Kd值,表示硒銫在花崗岩中管柱中沒有達到收附平衡。而石英砂對硒銫沒有收附能力,因此批次實驗與管柱實驗結果的Kd值差異不大。此外,利用化學系列萃取實驗,驗證花崗岩中的晶相鐵氧化物主導對於四價硒的收附反應。
Abstract
An adequate performance assessment of underground repositories of radiowaste depends on good understanding of the transport behavior of radionuclides with concerned solid. In this study, the transport behavior of selenium and cesium on granite and quartz was investigated by column experiments and LEHGC model simulations. The results suggest that the averaged retardation factor, (Rf) of granite to adsorb selenium under both groundwater and seawater is about four, indicating the sorption of selenium is insensitive to ionic strength. However, the abundant cations in seawater weaken the Cs adsorption and the Rf of granite to adsorb Cs decreases from four of groundwater to one of seawater. The limited sorption ability of quartz to adsorb selenium and cesium leads to an Rf value of one for both radionuclides no matter under groundwater or seawater. The batch experiments were also conducted to study the adsorption ability of granite and quartz to adsorb selenium and cesium. The results show that the Kd values from batch experiments are higher than those from column experiments, suggesting that the sorption of selenium and cesium under granite column does not reach equilibrium. In contrast, the Kd from batch experiments consist with that from column experiments, revealing the limited sorption ability of quartz to adsorb selenium and cesium. Moreover, chemical sequential extraction was also conducted to study the sorption mechanism of granite to selenium. The results suggest the crystalline Fe oxides are the most important minerals for granite to adsorb selenium.
參考文獻
1. 張顧齡,「酸鹼度和溫度對鍶銫在膨潤土中吸附與擴散行為之影響」國立清華大學原子科學系研究所,碩士論文(1997)
2. Hayes, K. F.; Roe, A. L.; Brown Jr., G. E.; Hodgson, K. O.; Leckie, J. O.; Parks, G. A. In situ X-ray absorption study of surface complexes : selenium oxyanions on α-FeOOH. Sciece, 238, 783-786 (1987)
3. Forster, A. L.; Brown Jr., G. E.; Parks, G. A. X-ray absorption fine structure study of As(V) and Se(IV) sorption complexes on hydrous Mn oxides. Geochim. Cosmochim. Acta, 67, 1937-1953 (2003)
4. Beauwens, T.; Cannie`re, P.D.; Moors, H.; Wang, L.; Maes, N. Studying the migration behaviour of selenate in Boom Clay by electromigration. Eng. Geol., 77, 285–293 (2005)
5. Papelis C.Cation and anion on granite from the Project Shoal Test Area, near Fallon, Nevada, USA. Adv. Environ. Res., 5, 151-166 (2001)
6. Tessier, A.; Campbell, P. G.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metal. Anal. Chem., 51, 844-851 (1979)
7. Zhang, Y.; Frankenberger, W. T. Factors affecting removal of selenate in agricultural drainage water utilizing rice straw. Sci. Total Environ. 305, 207-216 (2003)
8. Baik, M. H.; Hyun, S. P.; Hahn, P. S. Contribution of minerals to the sorption of U(VI) on granite. Radiochim. Acta, 92, 663-669 (2004)
9. Lim, T.T.; Goh, K.H. Selenium extractability from a contaminated fine soil fraction : implication on soil cleanup. Chemosphere, 58, 91-101 (2005)
10. 李敏,梁天瑞「美麗新世界-核能與文明的永續未來」中華民國核能協會(2005)
11. Yeh, G. T., Siegel, M. D., Li, M. H. Numerical modeling of coupled variably saturated fluid flow and reactive transport with fast and slow chemical reactions, J. Contam. Hydrol., 47, 379-390 (2001)
12. Cheng, H. P., Li, M. H., Li, S. A. Sensibility analysis of model selection in modeling the reactive transport of cesium in crushed granite, J. Contam. Hydrol., 61, 371-385 (2003)
13. 陳子雲,「放射性廢料處置主要核種之遷移」清華大學原子科學系研究所,碩士論文(2001)
14. 李俞鋆,「硒銫在花崗岩上地下水中的吸附與擴散行為」清華大學原子科學系研究所,碩士論文(2004)
15. 郭殷銘,「銫在粉碎花崗岩中宿命與傳輸模式之建立」國立清華大學原子科學系研究所,碩士論文(2002)
16. Hsu, C. N., Wei, Y. Y., Chuang, J. T., Tseng, C. L., Yang, J. Y., Ke, C. H., Cheng, H. P., Teng, S. P. Sorption of several safety relevant radionuclides on granite and diorite-a potential repository host rock in the Taiwan area, Radiochimica Acta, 90, 659-664 (2002)
17. 劉靜蓉,「鍶銫在潛在母岩與水泥工程障壁中吸附與擴散的基礎研究」國立清華大學原子科學系研究所,碩士論文(1999)
18. Davis, J. A., Coston, J. A., Kent, D. B., Fuller, C. C. Application of the surface complexation concept to complex mineral assemblages, Environ. Sci. Technol., 32, 2820-2828 (1998)
19. Jackson, B. P., Miller, W. P. Effectiveness of phosphate and hydroxide for desorption of arsenic and selenium from iron oxide, Soil Sci. Soc. Am. J., 64, 1616-1622 (2000)
20. Peak, D., Sparks, D. L. Mechanisms of selenate adsorption on iron oxides and hydroxides, Environ. Sci. Technol., 36, 1460-1466 (2002)
21. Rietra, R. P. J. J., Hiemstra, T., Riemsdijk, W. H. V. Comparison of selenate and sulfate adsorption on goethite, J. Colloid Interface Sci., 240, 384-390 (2001)
22. Su, C., Suarez, D. L. Selenate and selenite sorption on iron oxides: an infrared and electrophoretic study, Soil Sci. Soc. Am. J., 64, 101-111 (2000)
23. Zhang, P., Sparks, D. L. Kinetics of seleate and selenite adsorption/desorption at the goethite/water interface, Environ. Sci. Technol., 24, 1848-1856 (1990)