簡易檢索 / 詳目顯示

研究生: 陳俊良
Chen, Chun-Liang
論文名稱: 濕式製程沉積氧化矽之太陽能電池製作與研究
Deposition of Silicon Oxide at Front Side of Silicon Solar Cell
指導教授: 王立康
Wang, Li-Karn
口試委員: 陳昇暉
Chen, Sheng-Hui
余沛慈
Yu, Pei-Chen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 59
中文關鍵詞: 化學沉積氧化矽
外文關鍵詞: p-type silicon solar cell, chemical silicon oxide
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要有三個部分,第一部分為確保矽酸鈉溶液在使用SK1BH陽離子交換樹酯後能將溶液中的Na離子去除,此階段以XPS縱深分析結果佐證,而後找出能使退火後少數載子壽命提升效果最佳的溶液配置以及最佳的退火溫度及時間。
    第二部分則是將沉積過氧化矽的矽基板以PECVD沉積不同厚度之氮化矽作為抗反射層,並觀察厚度與其反射率之影響。而我們可以發現反射率最低點約落650nm,平均之反射率約2.66%,最低反射率約1.15%。
    最後在電池元件的部分,以SEM量測背部電極的BSF的厚度,而I-V量測結果顯示填充因子FF達到77.2%,轉換效率達到16.77%。


    There are three main parts in this study:
    In the first part, we ensured that the Na+ ions in the sodium silicate solution could be removed after the solution was filtered through the SK1BH cation exchange resin. The XPS measurement confirmed the removal of the Na ions. Then we found the best solution concentration and annealing temperature for increasing minority carrier lifetime of the multicrystalline silicon wafer.
    In the second part, the chemically wet deposition technique was used to deposit a layer of silicon oxide. Using the chemically wet deposited silicon oxide as a part of antireflection layer. The thickness of silicon nitride was optimized to give an reflectance as low as possible. It was found that the optimal two-layer antireflection layer corresponds to an average reflection of 2.66% with a minimum of 1.15% at 650nm.
    In the third part , we used the stacked antireflection layer at the front in fabricating multicrystalline silicon solar cells. The I-V measurement showed that FF reached 77.2% and the conversion efficiency was 16.77%.

    第一章 序論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-3研究目的 4 1-4 論文架構 4 第二章 基本原理 5 2-1 半導體物理基本原理 5 2-1-1 半導體材料 5 2-1-2 晶體結構 6 2-1-3 半導體摻雜 8 2-1-4 半導體能帶 9 2-1-5 p-n接面 11 2-2太陽能電池 11 2-2-1 太陽光譜 11 2-2-2 太陽能電池之基本架構與工作原理 13 2-2-3 太陽能電池之等效電路 14 2-2-4 太陽能電池之電性參數 16 2-2-5 太陽能電池之效率損失與改善方法 19 2-3氧化矽之表面鈍化 20 第三章 研究方法與製程步驟 21 3-1 前置步驟 21 3-2 元件製作流程 23 3-3 量測方法 30 第四章 實驗數據與分析 33 4-1 矽酸鈉溶液沉積氧化矽之討論 33 4-1-1 矽酸鈉溶液比例之討論 33 4-1-2 矽酸鈉溶液溫度之討論 35 4-1-3 濕式氧化矽沉積後XPS分析 36 4-1-4 濕式沉積氧化矽的TEM量測 39 4-1-5 濕式沉積氧化矽退火溫度之討論 40 4-1-6 濕式沉積氧化矽退火時間之討論 43 4-2 太陽能電池元件 45 4-2-1抗反射層各厚度之反射率的量測 45 4-2-2 有無氧化矽之反射率的比較 46 4-2-3 SEM量測 48 4-2-4 I-V量測與效率 50 第五章 結論 53 參考文獻 55

    [1] Euan Nisbet and Martin Manning, The Global Atmosphere: Greenhouse Gases and Urban Pollution, World Meteorological Organization Vol. 58 (1) ,2009.
    [2] Matthew Wild, originally published by Peak Generation, It’s Worse Than You Think: Plotting Global Hydrocarbon Collapse, Peak Generation, 2010.
    [3] Saeed Ahmed, Anzar Mahmood and et. al., “A comparative review of China, India and Pakistan renewable energy sectors and sharing opportunities , “Renewable and Sustainable Energy Reviews, Vol. 57 ,PP.216-225, 2016.
    [4] Nathan S. Lewis and Daniel G. Nocera, Powering the Planet: Chemical Challenges in Solar Energy Utilization, Proceedings of the National Academy of Sciences( PNAS) Vol. 103 , PP. 15729-15735, October 24, 2006.
    [5] http://highscope.ch.ntu.edu.tw/wordpress/?p=72662
    [6] 翁敏航, Solar Cell 太陽能電池:原理、元件、材料、製程與檢測技術, 東華書局, PP. 12-21, 2011.
    [7] Dr. rer. nat. Frank Dimroth, “Wafer bonded four-junction GaInP/GaAa/GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency, ” Progress in Photovoltaics, Vol. 22, PP. 277-282, 2014
    [8] Martin A. Green, “Solar cell efficiency tables (Version 45) , ” Progress in Photovoltaics, Vol. 23, PP.1-9, 2014.
    [9] https://www.ise.fraunhofer.de/en/press-media/press-releases/2014/new-world-record-for-solar-cell-efficiency-at-46-percent.html
    [10] https://www.ise.fraunhofer.de/en/press-media/news/2017/new-world-record-efficiency-of-25-point-7-percent-for-both-sides-contacted-monocrystalline-silicon-solar-cell.html
    [11] Joseph A. Carson, Solar Cell Research Progress, PP. 118-120, 2008.
    [12] Yue Kuo, Thin film transistors. 1. Amorphous silicon thin film transistors, PP. 244-251,2004.
    [13] D. Yogi Goswami and Yuwen Zhao, Proceedings of ISES World Congress 2007 (Vol.1-Vol.5): Solar Energy and Human Settlement, Springer-Verlag Berlin Heidelberg , PP. 1192-1197, 2009.
    [14] 黃韻如,”利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究”,國立中央大學 材料科學與工程研究所碩士論, 2013.
    [15] 梁仲凱,”利用硝酸氧化與熱氧化法鈍化多晶矽太陽能電池之研究”,國立清華大學光電工程研究所碩士論文, 2014.
    [16] https://www.britannica.com/science/electrical-conductivity
    [17] Louisette Priester, Grain Boundaries and Crystalline Plasticity, PP. 1-6,2013.
    [18] http://www.wikiwand.com/zh-hk/%E5%8D%8A%E5%AF%BC%E4%BD%93#
    [19] Raymond A. Serway and John W. Jewett, Physics for Scientists and Engineers, Vol. 5, Brooks Cole , PP. 1315-1323,2010.
    [20] 蕭宏,半導體製程技術導論(第三版),全華圖書, PP. 150-155, 2014.
    [21] https://en.wikipedia.org/wiki/Solar_irradiance
    [22] M.D. Lammert and R.J. Schwartz,” The interdigitated back contact solar cell: A silicon solar cell for use in concentrated sunlight,” IEEE Transactions on Electron Devices, Vol. 24, PP.337-342, 1977.
    [23] M. Hofmann and C. Schmidt and N. Kohn and J. Rentsch and S. W. Glunz and R. Preu,” Stack system of PECVD amorphous silicon and PECVD silicon oxide for silicon solar cell rear side passivation,” Progress in Photovoltaics: Research and Applications, Vol. 16, PP. 509–518, 2008.
    [24] 陳柏宏, “濕式氧化法形成Al2O3鈍化層之背面具局部接觸結構矽晶太陽能電池研究”, 國立清華大學光電工程研究所碩士論文, 2016.
    [25] 經濟部能源局, 2007年能源科技研究發展白皮書, 秀威資訊科技股份有限公司, PP. 71-72, 2007.
    [26] M. J. Kerr, J. Schmidt, and A. Cuevas,” Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide,” Journal of Applied Physics ,Vol. 89, 2001
    [27] Asuha, Takuya Kobayashi, MasaoTakahashi, Hitoo Iwasa, Hikaru Kobayashi,” Spectroscopic and electrical properties of ultrathin SiO2 layers formed with nitric acid,” Surface Science, Vol. 547, PP. 275-283, 2003.
    [28] H. Seidel1, L. Csepregi, A. Heuberger and H. Baumgärtel,” Anisotropic Etching of Crystalline Silicon in Alkaline Solutions,” J. Electrochem. Soc., Vol. 137,PP. 3612-3626,1990.
    [29] Patrice Balamou , Heike Angermann, Bert Stegemann,” Reduction of the interface defect density on crystalline silicon solar cell substrates by wet-chemical preparation of ultrathin SiOx passivation layers, ” Photovoltaic Specialist Conference (PVSC), IEEE 42nd,2015.
    [30] Jan Schmidt, Mark Kerr and Andrés Cuevas,” Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks,” Semiconductor Science and Technology, Vol. 16, 2001.
    [31] FrankFeldmann, MartinBivour, ChristianReichel, MartinHermle, Stefan W.Glunz,” Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics,” Solar Energy Materials and Solar Cells, Vol. 120, PP. 270-274,2014.
    [32] S. Narasinha , A. Rohatgi,” Optimized aluminum back surface field techniques for silicon solar cells,” Photovoltaic Specialists Conference, Conference Record of the Twenty-Sixth IEEE,1997.

    QR CODE