簡易檢索 / 詳目顯示

研究生: 林育同
Lin, Yu-Tung
論文名稱: 探究120°反鐵磁奈爾態在錳奈米島嶼上的量子尺寸效應及鉍在鋁(111)基板上的成長
Exploring Quantum Size Effect of Antiferromagnetic 120° Néel State on Mn Nanoislands and Growth Study of Bismuth on Al(111) Substrate
指導教授: 徐斌睿
Hsu, Pin-Jui
口試委員: 蘇蓉容
Su, Jung-Jung
鄭澄懋
Cheng, Cheng-Maw
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 65
中文關鍵詞: 自旋極化掃描穿隧式電子顯微鏡量子尺寸效應120°奈爾反鐵磁結構Kagome 結構
外文關鍵詞: Spin-polarized scanning tunneling microscopy, Quantum size effect, 120° antiferromagnetic Néel structure, Kagome lattice
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究分成兩個部分探究薄膜材料的驚奇特性。第一部分中我們透過自旋極化掃描穿隧式電子顯微鏡(spin-polarized scanning tunneling microscopy, SP-STM)量測單原子層錳島嶼上120°奈爾反鐵磁結構的量子尺寸效應,此外,透過SP-STM模擬,我們可以針對實驗量測到的磁性訊號進行分析及比對,進而了解背後的物理機制。
    2008年文獻曾經報導,錳在銀(111)基板上能形成平整的(1×1)六方晶格結構,透過自旋極化探針確認其表面為120°奈爾反鐵磁結構,一般來說奈爾結構中錳原子的自旋方向是完全平面內(in-plane)的,然而我們的實驗發現在小尺寸的錳島嶼上奈爾結構出現平面外(out-of-plane)分量,且會隨著外加磁場方向改變而翻轉。
    第二部分中我們進行鉍在鋁(111)基板上的生長研究,鋁(111)具有與銀(111)相近的晶格常數,且在低溫下具有超導性,目前對於鋁基板上的薄膜生長研究並不多。透過實驗我們發現鉍在鋁(111)基板上具有四種結構,包含根據理論計算具有平坦能帶(flat-band)的Kagome結構、似蜂巢狀六方晶格結構、(√3×√3)結構以及與鉍在銀基板上相似的(p×√3)條紋結構,這些成長良好的結構除了本身的物理特性外,也提供一個平台供未來結合磁性或拓墣材料的薄膜研究。


    This study is divided into two parts to explore the surprising properties of thin film systems.
    In the first part, we employ spin-polarized scanning tunneling microscopy (SP-STM) to measure the quantum size effect (QSE) of the 120° antiferromagnetic Néel structure in single layer Mn on Ag(111) substrate. Additionally, SP-STM simulations are used to analyze and compare the spin structures, aiming to elucidate the underlying physical properties. Previous literature has observed that Mn can form neatly arranged (1×1) triangular islands on Ag(111) substrate. Using a spin-polarized tip, a (√3×√3) magnetic pattern corresponding to the 120° antiferromagnetic Néel structure was identified. In the typical Néel state reported in 2008, the spin directions were entirely in-plane. However, our experiments revealed that when the island size is reduced to a certain extent, the 120° Néel structure exhibits an out-of-plane component and can be flipped with an applied magnetic field.
    In the second part, we study the thin film growth on the Aluminum (111) substrate. Al(111) has a lattice constant close to that of Ag(111) and possesses superconductivity below 1.2 K. However, aluminum crystals tend to oxidize, requiring the optimization of the cleaning process to achieve a flat and clean surface. Subsequently, we performed a growth study of bismuth on the Al(111) substrate. Four phases were obtained at different Bi coverages and substrate temperatures. By analyzing atomic resolution STM images, we propose structural models for these four phases.

    摘要 i Abstract ii Acknowledgement iii Table of Contents iv List of Figures vi List of Tables x 1. Introduction 1 1.1. Motivation 1 1.2. 120° Néel Antiferromagnetic Structure 3 1.3. Quantum Size Effect 5 1.4. Kagome Lattice 9 1.5. Literature Review 13 1.5.1. 120° Néel Antiferromagnetic Structure 13 1.5.2. Quantum Size Effect in Co/Cu(111) system 15 1.5.3. Topological Flat Bands in Kagome Lattice CoSn 17 2. Principle of Experimental Instrument 20 2.1. Vacuum System 20 2.1.1. Definition of Vacuum 20 2.1.2. Vacuum Pump 22 2.2. Electron Beam Evaporator 27 2.3. Spin-Polarized Scanning Tunneling Microscopy 28 2.3.1. One-Dimensional Quantum Tunneling 28 2.3.2. Fermi’s Golden Rule 29 2.3.3. Bardeen’s Tunneling Theory 30 2.3.4. Spin Dependent Tunneling and Spin-Polarized Scanning Tunneling Microscopy 33 2.3.5. STM Scanning Mode 35 2.3.6. SP-STM simulation 36 3. Experimental Result and Discussion 39 3.1. Sample Cleaning 39 3.1.1. Detailed Process 39 3.1.2. Special case in Al(111) substrate 40 3.2. Mn/Ag(111) System 42 3.2.1. Topography 42 3.2.2. Electronic properties 44 3.2.3. Magnetic properties 46 3.3. Bi/Al(111) System 49 3.3.1. Low coverage regime 50 3.3.2. Higher coverage regime 53 4. Conclusion 57 Reference 58 Appendix 62

    Cui-Zu Chang et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator. Science 340, 167-170 (2013).
    Liang Fu and C. L. Kane. Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator. Phys. Rev. Lett. 100, 096407 (2008).
    Stevan Nadj-Perge et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602-607(2014).
    C. L. Gao, W. Wulfhekel, and J. Kirschner Revealing the 120° Antiferromagnetic Néel Structure in Real Space: One Monolayer Mn on Ag(111). Phys. Rev. Lett. 101, 267205 (2008)
    G. Bian, X. Wang, T. Miller, and T.-C. Chiang. Origin of giant Rashba spin splitting in Bi/Ag surface alloys. Phys. Rev. B 88, 085427 (2013)
    Shuo Sun et al. Epitaxial Growth of Ultraflat Bismuthene with Large Topological Band Inversion Enabled by Substrate-Orbital-Filtering Effect. ACS Nano 16 (1), 1436-1443 (2022)
    Yasir Iqbal et al. Spin liquid nature in the Heisenberg J_1-J_2 triangular antiferromagnet. Phys. Rev. B 93, 144411 (2016)
    Soumyajyoti Haldar, Sebastian Meyer, André Kubetzka, and Stefan Heinze. Distorted 3Q state driven by topological-chiral magnetic interactions. Phys. Rev. B 104, L180404 (2021)
    S. Ciraci and Inder P. Batra. Theory of the quantum size effect in simple metals. Phys. Rev. B 33, 4294 (1986)
    N. D. Mermin and H. Wagner. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models. Phys. Rev. Lett. 17, 1133 (1966)
    Mamoru Mekata. Kagome: The Story of the Basketweave Lattice. Physics Today 56 (2), 12–13 (2003)
    Ph. Kurz; G. Bihlmayer; S. Blügel. Noncollinear magnetism of Cr and Mn monolayers on Cu(111). J. Appl. Phys. 87, 6101–6103 (2000)
    S. Ouazi, A. Kubetzka, K. von Bergmann, and R. Wiesendanger. Enhanced Atomic-Scale Spin Contrast due to Spin Friction. Phys. Rev. Lett. 112, 076102 (2014)
    M. V. Rastei et al. Size-Dependent Surface States of Strained Cobalt Nanoislands on Cu(111) Phys. Rev. Lett. 99, 246102 (2007)
    H. Oka et al. Spin-Dependent Quantum Interference Within a Single Magnetic Nanostructure Science 327,843-846 (2010)
    S. Ouazi, S. Wedekind, G. Rodary, H. Oka, D. Sander, and J. Kirschner. Magnetization. Reversal of Individual Co Nanoislands. Phys. Rev. Lett. 108, 107206 (2012)
    Ye, L., Kang, M., Liu, J. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).
    Kang, M., Ye, L., Fang, S. et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater. 19, 163–169 (2020).
    Kang, M., Fang, S., Ye, L. et al. Topological flat bands in frustrated kagome lattice CoSn. Nat. Commun 11, 4004 (2020)
    Vacuum technology — Vocabulary Part 1: General terms. ISO 3529-1:2019 (2019).
    Tian, S. et al. Internal flow and cavitation analysis of scroll oil pump by cfd method. Processes 9, (2021).
    Operating Manual and Programming Reference for Models RGA100, RGA200, and RGA300 Residual Gas Analyzer. Stanford Research Systems, (2009)
    Instruction manual for EFM 2, EFM 3, EFM 3s, EFM 4, EFM 3t and EFM 3i. Omicron Nano Technology, (2008).
    J. Bardeen. Tunneling from a many-particle point of view. Phys. Rev. 6, 57 (1961).
    Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).
    Slonczewski, J. C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 39, 6995–7002 (1989).
    W. Drube and F. J. Himpsel. Minority-spin states for V and Mn on Ag(111) by inverse photoemission. Phys. Rev. B 35, 4131(R) (1987)
    Bradley Albert James and Thewlis J.. The crystal structure of α-manganese. Proc. R. Soc. Lond. A115:456–471. (1927)
    Feng Liu. Modeling and Simulation of Strain-mediated Nanostructure Formation on Surface. in “Handbook of Theoretical and Computational Nanotechnology”, eds. M. Rieth and W. Schommers, Chapter 10, 577-625 (2006).
    K. H. L. Zhang, I. M. McLeod, Y. H. Lu, V. R. Dhanak, A. Matilainen, M. Lahti, K. Pussi, R. G. Egdell, X.-S. Wang, A. T. S. Wee, and W. Chen. Observation of a surface alloying-to-dealloying transition during growth of Bi on Ag(111). Phys. Rev. B 83, 235418 (2011)
    Y. Girard, C. Chacon, G. de Abreu, J. Lagoute, V. Repain, S. Rousset. Growth of Bi on Cu(111): Alloying and dealloying transitions. Surface Science 617, 118-123 (2013)
    Chun Hsien Chen, Keith D. Kepler, Andrew A. Gewirth, B. M. Ocko, and Jia Wang. Electrodeposited bismuth monolayers on gold (111) electrodes: comparison of surface x-ray scattering, scanning tunneling microscopy, and atomic force microscopy lattice structures. The Journal of Physical Chemistry 1993 97 (28), 7290-7294 (1993)
    D. Kaminski, P. Poodt, E. Aret, N. Radenovic, E. Vlieg. Surface alloys, overlayer and incommensurate structures of Bi on Cu(111). Surface Science 575, 3, 233-246 (2005)
    陳義斌. 自旋極化穿隧掃描顯微鏡研究錳於自旋阻挫系統與蜂巢狀結構(2023).
    Asadullah Awan, Hong Truong, Robert J. Lancashire. (2024, August 7). CHEM 211: Foundational Inorganic Chemistry (Nataro). LibreTextsCHEMISTRY.
    https://chem.libretexts.org/Courses/Lafayette_College/CHEM_212_213%3A_Inorganic_Chemistry_%28Nataro%29/05%3A_Coordination_Chemistry/5.06%3A_Crystal_Field_Theory/5.6.01%3A_Crystal_Field_Theory

    QR CODE