簡易檢索 / 詳目顯示

研究生: 吳倉聚
Tsang-Jiuh Wu
論文名稱: 微波激發之大面積高密度表面波電漿源之研究
Study of a Large Area High Density Surface Wave Plasma Source Excited by Microwave
指導教授: 寇崇善
Chwung-Shan Kou
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 150
中文關鍵詞: 可調式表面波共振腔
外文關鍵詞: tunable surface wave cavity
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功發展出一新型微波電漿源。其原理是利用可調式表面波共振腔激發電漿表面波,因而有大面積和高密度的特性。可調式表面波共振腔是由梳形慢波結構所組成,設計以p模式操作並與2.45GHz微波共振,具有高微波能源使用率及容易加大面積的優點。在理論方面,完成可調式表面波共振腔設計之外,也分析了電漿表面波的特性及激發條件。研究結果顯示,選擇適當尺寸可使電漿激發前與激發後之p模式共振頻率不變。在實驗方面,證實本電漿系統的一系列良好特性(電漿密度可達6’1012 #/cm3 。在均勻度±5%的要求下,面積達30cm’20cm。電漿溫度約1.5eV)。並首先驗證了表面波電漿的共振現象。藉由量測電漿密度與電場強度的空間分佈,明確指出當電漿密度達到特定臨界值時,電場分佈在該處會出現極大值。改變電漿密度分佈發現,電場高峰的移動行為及共振高峰特性,完全與理論預測相符合。量測電子能量分布並觀察到高能電子的產生。


    A new microwave plasma source has been successfully developed. This plasma source has high density and large area characteristics due to the excitation of plasma surface wave by a tunable surface wave cavity. The tunable surface wave cavity is composed of a vane type slow wave structure. It is operated in the p mode and resonant at 2.45 GHz. A linear theory is developed to design the cavity and analyze the waves in the plasma guided by a vane-type slow wave structure. It shows that by choosing a proper dimension of the cavity, the p mode resonant frequency will not change after the excitation of the plasma. In experimental aspect, good characteristics of this plasma source are verified. The plasma area is in access of 30cm’20cm with a uniformity ±5% and plasma density as high as 6’1012 cm-3. The plasma temperature is ~1.5eV. Above all, the number of the periods of the p mode cavity can be increased without changing the resonance frequency and the distribution of the microwave fields such that this plasma source is easy to up-scaled. In addition, the plasma resonance in a surface wave sustained plasma is first clearly characterized. The amplitude of the electric field of the microwave becomes a local maximum in the location where the local plasma density is equal to a critical value. In accordance with the theory, the measured maximum value of the resonance response is proportional to the plasma density gradient while the measured spatial width of the plasma resonance is inversely proportional to the plasma density gradient. High-energy electrons are observed in the plasma resonance.

    參考資料
    [1] K. Muraoka, C. Honda, K. Uchino, T. Kajiwara, K. Matsuo, M. Bowden, W. Z. Park, Y. Hirakawa and K. Tanaka, Rev. Sci. Instrum., 63, 4913, 1992.
    [2] F. Werner, D. Korzec and J. Engemann, Plasma Source Sci. Technol., 3, 473, 1994.
    [3] Michael A. Lieberman and Richard A. Gottsho in " Physics of thin films ", Vol. 18, Acdematic press, New York, 1994.
    [4] M. Kamo, Y. Sato, S. Matsumoto and N. Setaka, J. Cryst. Growth, 62, p.642, 1983.
    [5] P. K. Bachmann, W. Drawl, D. Knight, R. Weimen and R. F. Messier, Diamond and Diamond-Like Materials Synthesis, Extended Abstracts, Materials Research Society Sym. Proc, EA-15, Materials Research Society, Pittsburgh, PA, 99, 1988.
    [6] R. G. E. Hutter, Beam and Wave Electronics in Microwave Tubes (Van Noserand, Princeton, 1960)
    [7] C. S. Liu and V. K. Tripathi, " Introduction of electromagnetic waves with electron beam and plasmas ", World Scientific, Singapore, 1994.
    [8] A.W. Trivelpiece and R. W. Gould, J. Appl. Phys., 30, 1784 (1959)
    [9] M. Moisan, C. Beaudry and P. Leprince, Phy. Lett., 50A 125 (1974)
    [10] M. Moisan, C. Beaudry and P. Leprince, IEEE Trans. Plasma Sci., ps-3, 55 (1975)
    [11] R. G. Bosisio, C. F. Weissfloch and M. R. Wertheimer, J. Microwave Power, 7, 325 (1972)
    [12] K. Komachi and S. Kobayashi, J. Microwave Power Electromagn. Energy, 24,140(1989).
    [13] F. F. Chen, in Plasma Diagnostic Techniques, edited by R. H. Huddle and S. L. Leonard (Academic, New York, 1995), Chap4.
    [14] M. Druyvesteyn and F. M. Penning, Rev. Mod. Phys. 12, 87(1940)
    [15] Yu. M. Kagan,V. I. Perel "Probe Methods in Plasma Research",Soviet Physics Uspekhi (Russian Vol. 81. Nos. 3-4 1964)
    [16] Michael A. Lieberman and Allan J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, (John Wiley & Sons, Inc.)
    [17] Yuri P. Raizer, Gas Discharge Physics, (Springer-Verlag, Berlin Heidelberg, 1991)
    [18] Yu M. Aliev, V Yu Bychenkov, A. V. Maximov, and H Schluter, Plasma Sources Sci. Technol., 1, 126(1992).
    [19] M. Zethoff and U. Kortshagen J. Phys. D: Appl. Phys., 25,1574(1992).
    [20] Yu M. Aliev and A. V. Maximov, Phys. Rev. E, 1,6091(1995).
    [21] I. Peres, M. Fortin and J Margot Phys. Plasmas, 3, 1754(1996).
    [22] S. Gross, M. Georgieva-Gross, I. Ghanashev and M Schluter J. Electromagn. Waves Appl., 11, 609(1997).
    [23] H. Sugai, I. Ghanashev and M. Nagatsu, Plasma sources Sci. Technol., 7, 192(1998).
    [24] E. Rauchle, J. Physique IV, Pr7-99(1998).
    [25] S. Gross, Proc. NATO ASI Advanced Technologies Based on Wave and Beam Generated Plasmas, 517(1999).
    [26] I Ghanashev, H. Sugai, S. Morita, and N. Toyoda, Plasma sources Sci. Technol., 8, 363(1999).
    [27] Leonard J. Mahoney, Amy E. Wendit, Ernesto Barrios, Carlyn J. Richards, and J. Leon Shohet, J. App. Phys., 76(4), 2041(1994).
    [28] Issac D. Sudit and R. Claude Woods, J. Appl. Phys., 76(8), 488(1994).
    [29] Teruyuki Shirakawa and Hido Sugai, Jpn. J. Appl., Phys. Part1, 32, 5129(1993).
    [30] N. G. Denisov, Soviet Phys. JEPT, 4, 544(1957).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE