簡易檢索 / 詳目顯示

研究生: 蕭文雄
Hsiao, Wen-Hsiung
論文名稱: Design and Implementation of Micro Polymer Ball Bearings
微型高分子滾珠軸承之設計製造
指導教授: 方維倫
Fang, Weileun
口試委員: 林弘毅
傅建中
方維倫
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 82
中文關鍵詞: 滾珠軸承高分子
外文關鍵詞: ball bearing, polymer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出創新的製程設計來實現微型高分子滾珠軸承,包括線性軸承滑軌、出平面轉動式軸承及同平面轉動式軸承。線性軸承滑軌及出平面轉動式軸承包括了一組以非等向性濕蝕刻形成矽基材<111>面的V型軌道,以及置入高分子滾珠的空間;其元件包含了移動滑塊、軌道以及置入高分子滾珠的空間皆由感應耦合式電漿蝕刻及濕蝕刻在雙面的<100>晶圓定義出來,最後以磁鐵鑲黏在滑塊上利用磁力致動的方式運動;而同平面轉動式軸承則是以材料替換的概念得到轉子的結構,以及等向性濕蝕刻蝕刻出置入滾珠的空間;高分子滾珠製成的方式則是利用在相同密度的溶液內,以點膠的方式在軌道內置入高分子液珠,高分子液珠照射UV光後在轉子、定子之間固化成滾珠,並且完成微型軸承;最後初步證實其轉動的可行性。


    目錄 摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XIII 第1章 序論 1 1-1前言 1 1-2研究動機 2 1-3文獻回顧 3 1-3.1接觸式軸承 3 1-3.2非接觸式軸承 4 1-3.3滾珠軸承 5 1-4研究目標 7 第2章 元件設計 19 2-1線性軸承滑軌 19 2-2出平面轉動式軸承 22 2-3同平面轉動式軸承 22 第3章 線性軸承滑軌與出平面轉動式軸承 35 3-1製程流程 35 3-2製程問題與改善 37 3-2.1濕蝕刻造成側壁粗糙 37 3-2.2凸角攻擊處造成粗糙面 38 3-3量測結果 39 3-3.1線性軸承滑軌摩擦係數量測 40 3-3.2出平面轉動式軸承轉動測試 40 第4章 同平面轉動式軸承 53 4-1製程流程 53 4-2製程問題與改善 54 4-2.1等向性濕蝕刻調變參數 55 4-2.2研磨製程問題探討 56 4-2.3點膠製程問題探討 57 4-3同平面轉動測試 58 第5章 結論與未來工作 71 5-1結論 71 5-2未來工作 71 參考文獻 77

    [1] L.-S. Fan, Y.-C. Tai, and R. S. Muller, “IC-processed electrostatic micromotors,” International Electron Devices Meeting, New York, 1988, pp 666-669.
    [2] L.-S. Fan, Y.-C. Tai, and R. S. Muller, “Integrated movable micromechanical structures for sensors and actuators,” IEEE Transactions on Electron Devices, 35, pp 724-730, 1988.
    [3] M. Mehregany, K. J. Gabriel, and W. S. N. Trimmer, “Integrated fabrication of polysilicon mechanisms,” Transactions on Electron Devices, 35, pp 719, 1988.
    [4] S. F. Bart, “Member Electric Micromotor Dynamics,” IEEE Transactions on Electron Devices, pp 566-575, 2002
    [5] V. Kaajakari, A. Lal, “Micromachined ultrasonic motor based on parametric polycrystalline silicon plate excitation,” Sensors and Actuators A: Physical, 137, pp 120-128, 2007.
    [6] C. H. Ahn, Y. J. Kim, and M. G. Allen, “A Planar Variable Reluctance Magnetic Micromotor with Fully Integrated Stator and Coils,” Journal of Microelectromechanical Systems, 2, pp 165-173, 1993.
    [7] S. Kumar, D. Cho, and W. N. Carr, “Experimental Study of Electric Suspension for Microbearings,” Journal of Microelectromechanical Systems, 1, pp 23-30, 1992.
    [8] X. S. Wu, W. Y. Chen, X. L. Zhao et al., “Micromotor with electromagnetically levitated rotor using separated coils,” Electronics Letters, 40, pp 996-997, 2004.
    [9] C. Livermore, A. R. Forte, T. Lyszczarz, “A High-Power MEMS Electric Induction Motor,” Journal of Microelectromechanical Systems, 13, pp 465-471, 2004.
    [10] L. G. Frechette, S. A. Jacobson, K. S. Breuer et al., “High-Speed Microfabricated Silicon Turbomachinery and Fluid Film Bearings,” Journal of Microelectromechanical Systems, 14, pp 141-152, 2005.
    [11] A. Takei, N. Binh-Khiem, E. Iwase et al., “Liquid motor driven by electrowetting,” IEEE MEMS, Tucson, Arizona, 2008, pp 42-45.
    [12] Kajiwara, K. Suzuki, H. Miura et al.,” Research Reports of Kogakuin University, pp 25-30, 2006.
    [13] M. L. Chan, “Low friction liquid bearing MEMS micromotor,” IEEE MEMS, Cancun, Mexico, 2011, pp 1237-1240.
    [14] A. Modafe, N Ghalichechian, A Frey, J H Lang and R Ghodssi, “Microball-bearing-supported electrostatic micromachines with polymer dielectric films for electromechanical power conversion,” Journal of Micromechanics and Microengeering, 16, pp 182-190, 2006.
    [15] X. Tan, A. Modafe, R. Ghodssi, “Measurement and Modeling of Dynamic Rolling Friction in Linear Microball Bearings,” Transactions of the ASME, 128, pp 891-898, 2006.
    [16] N. Ghalichechian, A. Modafe, J. H. Lang, and R. Ghodssi, "Dynamic characterization of a linear electrostatic micromotor supported on microball bearings," Sensors and Actuators A: Physical, 136, pp 496, 2007.
    [17] C. M. Waits, B. Geil and R. Ghodssi, “Encapsulated ball bearings for rotary micro machines,” Journal of Micromechanics and Microengeering, 17, pp 224-229, 2007.
    [18] N. Ghalichechian, A. Modafe, M. I. Beyaz et al., “Design, Fabrication, and Characterization of a Rotary Micromotor Supported on Microball Bearings,” Journal of Microelectromechanical Systems, 17, pp 632-642, 2008.
    [19] N. Ghalichechian, M. McCarthy, M. I. Beyaz, and R. Ghodssi, “Measurement and modeling of friction in linear and rotary micromotors supported on microball bearings,” IEEE MEMS, Tucson, Arizona, 2008, pp 13-17.
    [20] M. McCarthy, M. I. Beyaz, C. M. Waits, and R. Ghodssi, “An electro-pneumatic thrust balance for small-scale energy conversion using encapsulated rotary microball bearings,” Proceedings of Power MEMS, Japan, 2008, pp129-132.
    [21] M. McCarthy, C M. Waits, M. I. Beyaz and R. Ghodssi, “A rotary microactuator supported on encapsulated microball bearings using an electro-pneumatic thrust balance,” Journal of Micromechanics and Microengeering, 19, pp1-7, 2009.
    [22] M. I. Beyaz, M. McCarthy, N. Ghalichechian and R. Ghodssi, “Closed-loop control of a long-range micropositioner using integrated photodiode sensors,” Sensors and Actuators A, 151, pp 187-194, 2009.
    [23] M. McCarthy, C. M. Waits and R. Ghodssi, “Dynamic Friction and Wear in a Planar-Contact Encapsulated Microball Bearing Using an Integrated Microturbine,” Journal of Microelectromechanical Systems, 18, pp 263-273, 2009.
    [24] M. Waits, M. McCarthy, R. Ghodssi, “A Microfabricated Spiral-Groove Turbopump Supported on Microball Bearings,” Journal of Microelectromechanical Systems, 19, pp 99-109, 2010.
    [25] C.-C. Lee, S.-Y. Hsiao, and W. Fang, “Implementation of a micro ball lens on a silicon optical bench using insoluble two-phase liquid immersion technology,” Journal of Micromechanics and Microengeering, 20, pp 085015, 2010.
    [26] R. Hergert, Ingrid S.Y. Ku, T. Reddyhoff, and A. S. Holmes, “Micro rotary ball bearing with integrated ball cage: Fabrication and characterization,” IEEE MEMS, Hong Kong, 2010, pp 687-690.
    [27] B. K. Smith, C. D. Brown, G. L.Vigne, and J. J. Sniegowski, “Thin Teflon-like films for MEMS: film properties and reliability studies,” Proceedings of SPIE, Santa Clara, CA, 1998, pp 114.
    [28] D.-S. Lim, J.-W. An, and H. J. Lee, “Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites,” Wear, 252, pp 512, 2002.
    [29] N. A. Aziz, B. Bais, A. A. Hamzah and B. Y. Majlis, “Characterization of RNA etchant for silicon microneedles array fabrication,” ICSE2008, Malaysia, 2008, pp 203-206.
    [30] N. A. Aziz, M. R. buyong, B. Y. Majlis, “Process characterization of wet etching for high aspect ratio microneedles development,” Advanced Materials Research, 74, pp 341-344, 2009.
    [31] J. Albero, L. Nieradko, C. Gorecki, N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Optics express, 17, pp 6283-6292, 2009.
    [32] C.-W. Lin, C.-P. Hsu, H.-A. Yang, W. C. Wang and W. Fang,” Implementation of silicon-on-glass MEMS devices with embedded through-wafer silicon vias using the glass reflow process for wafer-level packaging and 3D chip integration,” Journal of Micromechanics and Microengeering, 18, pp 025018, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE