研究生: |
黃柏駿 Po-Chun Huang |
---|---|
論文名稱: |
全內反射螢光顯微鏡系統於DNA雜合反應之動態行為研究 The study of the dynamics of DNA hybridization by Total Internal Reflection Fluorescence Microscopy |
指導教授: |
許志楧
Ian C. Hsu 吳見明 Chien-Ming Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 消逝波 、全內反射螢光顯微鏡 |
外文關鍵詞: | evanescent wave, Total Internal Reflection Fluorescence Microscopy |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全內反射螢光顯微鏡在單分子螢光影像的觀測實驗中是必要的工具。藉由這個工具,可以顯著降低來自焦點外的背景螢光雜訊,而激發雷射也會被完全阻擋。本實驗室建構一稜鏡式全內反射螢光顯微鏡系統以研究單分子螢光影像。
以532nm二極體雷射的消逝波為激發光源,可以觀察到Dragon Green螢光珠以及Cy3螢光分子。因為消逝波的螢光激發範圍很小(穿透深度大約200nm),且其強度隨深度而指數衰減,這些特徵或許可以用於微陣列基因晶片系統實驗中,DNA分子雜合反應的動態研究。
目前雖然訊雜比不夠大而無法觀察到單分子螢光影像,小波分析仍然被應用在尋找光漂白事件的平均訊號強度變化—這個變化視為一個分子的螢光強度。
本研究的目標是以最佳化訊雜比的全內反射螢光顯微鏡系統研究DNA分子雜合反應之動態行為。未來將整合高解析度的雷射光鑷子系統和全內反射螢光顯微鏡系統在一個平台上,做為研究單分子問題的有力工具。
Total Internal Reflection Fluorescence Microscopy (TIRFM) is a necessity in observing images of single fluorescence molecules. By using it the background fluorescence signal from out of focus fluorophores can be reduced significantly and also blocking the excitation laser light completely. I have set up a prism type TIRFM system to study single molecule fluorescence images.
Under the use of evanescent waves from a 532 nm diode laser for excitation, the Dragon Green fluorescent beads and Cy3 molecules were observed. Because the penetration depth of the evanescent wave is really short (i.e. about 200nm) and the intensity of the evanescent wave decreases exponentially with depth, these characters may be used to study the dynamics of DNA hybridization in microarray gene chip experiments.
Although the signal-to-noise ratio is not big enough to observe single molecule fluorescence, wavelet analysis was still applied looking for the mean intensity of photo bleach from single fluorescence molecules.
The goal is to reach to the best signal-to-noise ratio and to get single molecule fluorescence images. In this way the technique can then be used to analyze the dynamics of DNA hybridization. The high resolution optical tweezers and TIRFM system will be combined to study more biomedical problems in the future.
[1] M. J. Lang, C. L. Asbury, J. W. Shaeitz, and S. M. Block, An automated two-dimensional optical force clamp for single molecule studys. Biophys. J. , 2002. 83: p. 491-501.
[2] A. Rohrbach and E. H. K. Stelzer , Optical trapping of dielectric particles in arbitrary fields. J.Opt.Soc.Am.A , 2001.
[3] D. Axelrod, Total Internal Reflection Fluorescence Microscopy in Cell Biology. Traffic , 2001. 2: p. 764-774.
[4] R. Iino, I. Koyama, A. Kusumi, Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys. J. , 2001. 80: p. 2667-2677.
[5] T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, T. Yanagida, Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature , 1995. 331: p. 450-453.
[6] S. Lindek, C. Cremer, and E. H. K. Stelzer, Confocal theta fluorescence microscopy with annular apertures. APPLIED OPTICS , 1996. 35: p. 1.
[7] F. de Lange, , A. Cambi, , R. Huijbens, , B. de Bakker, , W. Rensen, , M. Garcia-Parajo, , N. van Hulst, , C. G. Figdor, , Cell biology beyond the diffraction limit: near-field scanning optical microscopy. J Cell Sci , 2001. 114: p. 4153-4160.
[8] S. G. Boxer, Molecular transport and organization in supported lipid membranes. Curr.Opin.Chem.Biol , 2000. 4: p. 704-709.
[9] L. S. Churchman, O. Zeynep, R. S. Rock, J. F. Dawson, and J. A. Spudich, Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. PNAS , 2005. 102(5): p. 1419-1423.
[10] Y. Sako, S. Minoghchi, T. Yanagida, Single-molecule imaging of EGFR signaling on the surface of living cells. Nat. Cell Biol. , 2000. 2: p. 168-172.
[11] A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, P. R. Selvin, Myosin V walks hand-over-hand: single fluorophore imaging with 1.5nm localization. SCIENCE ,2003. 300: p. 2061-2065.
[12] A. Yildiz, M. Tomishige, R. D. Vale, P. R. Selvin1, Kinesin Walks Hand-Over-Hand. SCIENCE , 2004. 303: p. 30.
[13] S. Jin, P. Huang, J. Parker, J.Y. Yoo, K.S. Breuer, Near-surface velocimetry using evanescent wave illumination. Experiments in Fluids , 2004. 37: p. 825-833.
[14] M. J. Schnitzer and S. M. Block, Kinesin hydrolyses one ATP per 8-nm step. Nature , 1997. 288: p. 24.
[15] M. Dahan, S. Levi, C. Luccardini, P. Rostaing, B. Riveau, A. Triller, Diffusion dynamics of Glycine receptors revealed by single-quantum dot tracking. SCIENCE, 2003. 302: p. 442-445.
[16] T. Kohl, A protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins. PNAS, 2002 .
[17] M. P. Gordon, T. Ha, and P. R. Selvin, Single-molecule high-resolution imaging with photobleaching. PNAS, 2004.
[18] R. E. Thompson, D. R. Arson, and W. W. Webb, Precise nanometer localization analysis for individual fluorescent probe. Biophysical Journal , 2002. 82: p. 2775-2783.
[19] A. Rohrbach, Observing secretory granules with a multiple evanescent wave microscope. Biophysical Journal, 2000. 78(5): p. 2641-2654.
[20] M. K. Cheezum, W. F. Walker, W. H. Guilford, Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys.j. , 2001. 81: p. 2378-2388.
[21] D. W. Pierce, N. Hom-Booher, and R. D. Vale, Imaging individual green fluorescent proteins. NATURE , 1997. 388: p. 24.