研究生: |
陳相宏 Chen, Hsiang Hung |
---|---|
論文名稱: |
製備石墨烯/奈米銀線/聚乙烯醇複合薄膜於電磁波屏蔽之應用 Preparing Graphene/Silver nanowires/ Polyvinyl alcohol complex thin films for Electromagnetic Interference Shielding Application |
指導教授: |
李育德
Lee, Yu Der |
口試委員: |
劉英麟
蔡宏斌 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 115 |
中文關鍵詞: | 石墨烯 、奈米銀線 、聚乙烯醇 、電磁波遮蔽 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電子設備在軍事、工業、通訊、生醫、太空和其他目的的應用日漸成長,一些噪音汙染、無線電頻率干擾(RFI)、無線電輻射、電磁波干擾(EMI)問題也越來越嚴重,這些問題不僅會干擾或損壞設備,對人體健康也存在著隱憂,因此,為了不讓這些干擾日漸嚴重,研發具有電磁波遮蔽的技術或材料是相當重要的。
本研究欲將石墨烯當作導電性填料,與水溶性聚乙烯醇混摻,利用聚乙烯醇良好的成膜性質,製備出具有遮蔽電磁波性質的複合薄膜材料,製程中不使用有機溶劑,符合環保概念。此外,為了使石墨烯達到良好的分散性,利用分散劑讓石墨烯在聚乙烯醇基材中良好的分散,使複合薄膜達到更好的導電度,而具備更佳的電磁遮蔽效果。另一方面,奈米銀線導電度良好,而且穩定性好,較不容易被氧化,因此,為了使複合材料建立更佳的導電網路,本研究添加了一維奈米銀線當作複合材料的第二種填料,並將複合材料以戊二醛交聯提升耐水性,最後,在ASTM- D4935-99測試規範下,使用頻譜分析儀搭配信號產生器檢測複合薄膜電磁波遮蔽效果,得到具有電磁屏蔽性能、加工性優良,而且環保無毒的聚乙烯醇/石墨烯/奈米銀線複合薄膜。
As electronic devices become popular in the application of military, industrial, communications, biomedical, and in space, some noise pollution, radio frequency interference (RFI), radio radiation, electromagnetic interference (EMI) problems are more serious. These problems will not only interfere with equipment but damage to human health. Therefore, in order to prevent these disturbances become more serious, developed with technology or electromagnetic shielding material is very important.
This study wishing graphene as an electrically conductive filler, blended with water soluble polyvinyl alcohol. We make use of the good film-forming properties of polyvinyl alcohol, to prepared a composite film with electromagnetic shielding properties. This process does not use organic solvent, in line with concept of environmental protection. Furthermore, in order to achieve good graphene dispersion in polyvinyl alcohol substrate, we using dispersant to disperse graphene to achieve a better degree of conductivity, and have better electromagnetic shielding effects. On the other hand, silver nanowires have well conductivity and good stability. Therefore, in order to build a better electrically conductive network, this study added silver nanowires as second filler material. We also used glutaraldehyde to crosslink PVA to enhance the water resistance of composite. Finally, at ASTM-D4935-99 test specification, using vector network analyzer to detect the electromagnetic shielding effect of composite film to give a electromagnetic shielding effect, excellent workability, and nontoxic PVA / graphene / silver nanowires composite film.
1. P. M. Ajayan, L. S. Schadler, P. V. Braun, Nanocomposite Science and Technology. (Wiley-VCH Verlag GmbH & Co. KGaA, 2004).
2. I. Capek, Nanocomposite Structure and Dispersion: Science and Nanotechnology-Fundamental Principles and Colloidal Particles. (Elsevier, 2006).
3. D. Gerion et al., Sorting Fluorescent Nanocrystals with DNA. Journal of the American ChemicalSociety 124, 7070-7074 (2002).
4. S. Stankovich et al., Graphene-based composite materials. Nature 442, 282-286 (2006).
5. M. Sumita, Y. Tsukumo, K. Miyasaka, K. Ishikawa, Tensile yield stress of polypropylene composites filled with ultrafine particles. Journal of Materials Science 18, 1758-1764 (1983).
6. J. I. Hong, K. S. Cho, C. I. Chung, L. S. Schadler, R. W. Siegel, Retarded crosslinking in ZnO-low-density polyethylene nanocomposites. Journal of Materials Research 17, 940-943 (2002).
7. E. Petrovicova, R. Knight, L. S. Schadler, T. E. Twardowski, Nylon 11/silica nanocomposite coatings applied by the HVOF process: I. microstructure and morphology. Journal of Applied Polymer Science 77, 1684-1699 (2000).
8. F. Yang, Y. Ou, Z. Yu, Polyamide 6/silica nanocomposites prepared by in situ polymerization. Journal of Applied Polymer Science 69, 355-361 (1998).
9. Y. Zhang et al., Preparation and optical absorption of dispersions of nano-TiO2/MMA (methylmethacrylate) and nano-TiO2/PMMA (polymethylmethacrylate). Materials Research Bulletin 34, 701-709 (1999).
10. M. Avella, M. E. Errico, E. Martuscelli, Novel PMMA/CaCO3 nanocomposites abrasion resistant prepared by an in situ polymerization process. Nano Letters 1, 213-217 (2001).
11. Y. H. Chang et al., Polymer solar cell by blade coating. Organic Electronics 10, 741-746 (2009).
12. J. Krantz, M. Richter, S. Spallek, E. Spiecker, C. J. Brabec, Solution-Processed Metallic Nanowire Electrodes as Indium Tin Oxide Replacement for Thin-Film Solar Cells. Advanced Functional Materials 21, 4784-4787 (2011).
13. C. Waldauf et al., Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact. Applied Physics Letters 89, (2006).
14. A. Savva et al., The Effect of Organic and Metal Oxide Interfacial layers on the Performance of Inverted Organic Photovoltaics. Advanced Energy Materials 3, 391-398 (2013).
15. F. Guo et al., ITO-Free and Fully Solution-Processed Semitransparent Organic Solar Cells with High Fill Factors. Advanced Energy Materials 3, 1062-1067 (2013).
16. B. S. Hansberg et al., Moving through the Phase Diagram: Morphology Formation in Solution Cast Polymer–Fullerene Blend Films for Organic Solar Cells. ACS Nano 5, 8579-8590 (2011).
17. B. S. Hansberg et al., In situ monitoring the drying kinetics of knife coated polymer-fullerene films for organic solar cells. Journal of Applied Physics 106, (2009).
18. 唐黎明, 庹新林, 高分子化學. (清華大學出版社, 2009).
19. K. Kosswig, Ullmann's Encyclopedia of Industrial Chemistry. (Wiley-VCH, 2000).
20. R. H. Schmedlen, K. S. Masters, J. L. West, Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 23, 4325-4332 (2002).
21. W. O. Herrmann, W. Haehnel, Poly-vinyl alcohol. Berichte Der Deutschen Chemischen Gesellschaft 60, 1658-1663 (1927).
22. S. J. Kim, K. J. Lee, I. Y. Kim, Y. M. Lee, S. I. Kim, Swelling kinetics of modified poly(vinyl alcohol) hydrogels. Journal of Applied Polymer Science 90, 3310-3313 (2003).
23. J. Krzeminski, H. M. Tolwinska, The structure of water-swollen poly(vinyl alcohol) and the swelling mechanism. Journal of Macromolecular Science: Part A - Chemistry 28, 413-429 (1991).
24. V. S. Praptowidodo, Influence of swelling on water transport through PVA-based membrane. Journal of Molecular Structure 739, 207-212 (2005).
25. R. Morita, R. Honda, Y. Takahashi, Development of oral controlled release preparations, a PVA swelling controlled release system (SCRS) I. Design of SCRS and its release controlling factor. Journal of Controlled Release 63, 297-304 (2000).
26. F. J. Liou, Y. J. Wang, Preparation and characterization of crosslinked and heat-treated PVA-MA films. Journal of Applied Polymer Science 59, 1395-1403 (1996).
27. Y. s. Pan, D. s. Xiong, R. y. Ma, Preparation and swelling behavior of polyvinyl alcohol physiological saline gel. Journal of Central South University of Technology 13, 27-31 (2006).
28. S. K. Sahoo, J. Panyam, S. Prabha, V. Labhasetwar, Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. Journal of Controlled Release 82, 105-114 (2002).
29. N. Wang, X. S. Wu, J. K. Li, A heterogeneously structured composite based on poly(lactic-co-glycolic acid) microspheres and poly(vinyl alcohol) hydrogel nanoparticles for long-term protein drug delivery. Pharmaceutical Research 16, 1430-1435 (1999).
30. X. Wang, T. Yucel, Q. Lu, X. Hu, D. L. Kaplan, Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials 31, 1025-1035 (2010).
31. J. M. Yang, W. Y. Su, T. L. Leu, M. C. Yang, Evaluation of chitosan/PVA blended hydrogel membranes. Journal of Membrane Science 236, 39-51 (2004).
32. W. Y. Chuang, T. H. Young, C. H. Yao, W. Y. Chiu, Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro. Biomaterials 20, 1479-1487 (1999).
33. T. H. Young, N. K. Yao, R. F. Chang, L. W. Chen, Evaluation of asymmetric poly(vinyl alcohol) membranes for use in artificial islets. Biomaterials 17, 2139-2145 (1996).
34. T. H. Young, W. Y. Chuang, N. K. Yao, L. W. Chen, Use of a diffusion model for assessing the performance of poly(vinyl alcohol) bioartificial pancreases. Journal of Biomedical Materials Research 40, 385-391 (1998).
35. W. Paul, C. P. Sharma, Acetylsalicylic acid loaded poly(vinyl alcohol) hemodialysis membranes: Effect of drug release on blood compatibility and permeability. Journal of Biomaterials Science Polymer Edition 8, 755-764 (1997).
36. P. Giusti et al., Hydrogels of poly(vinyl alcohol) and collagen as new bioartificial materials .1. Physical and morphological characterization. Journal of Materials Science: Materials in Medicine 4, 538-542 (1993).
37. M. G. Cascone, B. Sim∗, D. Sandra, Blends of synthetic and natural polymers as drug-delivery systems for growth-hormone. Biomaterials 16, 569-574 (1995).
38. A. Yamauchi et al., Behavior of poly(vinyl-alcohol) hydrogel in the vitreous body of albino rabbits. Folia Ophthalmologica Japonica 30, 385-389 (1979).
39. K. Burczak, E. Gamian, A. Kochman, Long-term in vivo performance and biocompatibility of poly(vinyl alcohol) hydrogel macrocapsules for hybrid-type artificial pancreas. Biomaterials 17, 2351-2356 (1996).
40. M. Mahmoudi et al., Multiphysics Flow Modeling and in Vitro Toxicity of Iron Oxide Nanoparticles Coated with Poly(vinyl alcohol). Journal of Physical Chemistry C 113, 2322-2331 (2009).
41. F. Yoshii, Y. Zhanshan, K. Isobe, K. Shinozaki, K. Makuuchi, Electron beam crosslinked PEO and PEO PVA hydrogels for wound dressing. Radiation Physics and Chemistry 55, 133-138 (1999).
42. K. H. Hong, Preparation and properties of electrospun poly (vinyl alcohol)/silver fiber web as wound dressings. Polymer Engineering & Science 47, 43-49 (2007).
43. M. Kokabi, M. Sirousazar, Z. M. Hassan, PVA-clay nanocomposite hydrogels for wound dressing. European Polymer Journal 43, 773-781 (2007).
44. Y. Zhou et al., Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules 9, 349-354 (2008).
45. T. D. Gierke, Ionic clustering in nafion perfluorosulfonic acid membranes and its relationship to hydroxyl rejection and chlor-alkali current efficiency. Journal of The Electrochemical Society 127, 10-14 (1977).
46. R. D. Armstrong, M. D. Clarke, The effect of traces of water on PEO4.5LiCF3SO3 films. Solid State Ionics 11, 305-306 (1984).
47. W. Xu et al., New proton exchange membranes based on poly (vinyl alcohol) for DMFCs. Solid State Ionics 171, 121-127 (2004).
48. F. Jing, Z. Haiyan, Q. Jinli, M. Jianxin, Solid alkaline electrolyte membranes based on poly(vinyl alcohol) for potential use in fuel cells. Acta Polymerica Sinica 7, 701-708 (2011).
49. G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science 377, 1-35 (2011).
50. Y. Chiba, Y. Tominaga, Poly(ethylene-co-vinyl alcohol)/sulfonated mesoporous organosilicate composites as proton-conductive membranes. Journal of Power Sources 203, 42-47 (2012).
51. A. Martı´nez-Felipe, C. M. Estopinan, C. T. Imrie, A. R. Greus, Characterization of crosslinked poly(vinyl alcohol)-based membranes with different hydrolysis degrees for their use as electrolytes in direct methanol fuel cells. Journal of Applied Polymer Science 124, 1000-1011 (2012).
52. U. Thanganathan, J. Parrondo, B. Rambabu, Nanocomposite hybrid membranes containing polyvinyl alcohol or poly(tetramethylene oxide) for fuel cell applications. Journal of Applied Electrochemistry 41, 617-622 (2011).
53. C. C. Yang, S. S. Chiu, S. C. Kuo, T. H. Liou, Fabrication of anion-exchange composite membranes for alkaline direct methanol fuel cells. Journal of Power Sources 199, 37-45 (2012).
54. T. Chakrabarty, A. K. Singh, V. K. Shahi, Zwitterionic silica copolymer based crosslinked organic-inorganic hybrid polymer electrolyte membranes for fuel cell applications. RSC Advances 2, 1949-1961 (2012).
55. R. K. Nagarale, W. Shin, P. K. Singh, Progress in ionic organic-inorganic composite membranes for fuel cell applications. Polymer Chemistry 1, 388-408 (2010).
56. D. A. Dikin et al., Preparation and characterization of graphene oxide paper. Nature 448, 457-460 (2007).
57. M. S. Fuhrer, C. N. Lau, A. H. MacDonald, Graphene: Materially Better Carbon. MRS Bulletin 35, 289-295 (2010).
58. X. Li et al., Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotechnology 3, 538-542 (2008).
59. C. Gómez-Navarro et al., Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters 7, 3499-3503 (2007).
60. A. Reina et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters 9, 30-35 (2008).
61. K. S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004).
62. D. Luo, G. Zhang, J. Liu, X. Sun, Evaluation Criteria for Reduced Graphene Oxide. Journal of Physical Chemistry C 115, 11327-11335 (2011).
63. W. Chen, L. Yan, P. R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48, 1146-1152 (2010).
64. G. Williams, B. Seger, P. V. Kamat, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487-1491 (2008).
65. K. Vinodgopal et al., Sonolytic Design of Graphene-Au Nanocomposites. Simultaneous and Sequential Reduction of Graphene Oxide and Au(III). Journal of Physical Chemistry Letters 1, 1987-1993 (2010).
66. M. Baraket et al., Reduction of graphene oxide by electron beam generated plasmas produced in methane/argon mixtures. Carbon 48, 3382-3390 (2010).
67. E. C. Salas, Z. Sun, A. Lüttge, J. M. Tour, Reduction of Graphene Oxide via Bacterial Respiration. ACS Nano 4, 4852-4856 (2010).
68. Y. Wang, Z. Shi, J. Yin, Facile Synthesis of Soluble Graphene via a Green Reduction of Graphene Oxide in Tea Solution and Its Biocomposites. ACS Applied Materials & Interfaces 3, 1127-1133 (2011).
69. T. Zhou et al., A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite. Nanotechnology 22, (2011).
70. J. Che, L. Shen, Y. Xiao, A new approach to fabricate graphene nanosheets in organic medium: combination of reduction and dispersion. Journal of Materials Chemistry 20, 1722-1727 (2010).
71. M. J. F. Merino et al., Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. Journal of Physical Chemistry C 114, 6426-6432 (2010).
72. C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets. ACS Nano 4, 2429-2437 (2010).
73. Z. J. Fan et al., Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide. ACS Nano 5, 191-198 (2011).
74. Z. Fan et al., An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 48, 1686-1689 (2010).
75. J. Liang et al., Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47, 922-925 (2009).
76. S. Ansari, E. P. Giannelis, Functionalized Graphene Sheet-Poly(vinylidene fluoride) Conductive Nanocomposites. Journal of Polymer Science Part B: Polymer Physics 47, 888-897 (2009).
77. W. S. H. Jr., R. E. Offeman, Preparation of graphitic oxide. Journal of the American Chemical Society 80, 1339-1339 (1958).
78. X. Yang, L. Li, S. Shang, X.-m. Tao, Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites. Polymer 51, 3431-3435 (2010).
79. T. Zhou et al., The preparation of high performance and conductive poly (vinyl alcohol)/graphene nanocomposite via reducing graphite oxide with sodium hydrosulfite. Composites Science and Technology 71, 1266-1270 (2011).
80. H. Hu et al., Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization. Chemical Physics Letters 484, 247-253 (2010).
81. R. Feng et al., In situ synthesis of poly(ethylene terephthalate)/graphene composites using a catalyst supported on graphite oxide. Journal of Materials Chemistry 21, 3931-3939 (2011).
82. R. B. Gray. (United States, 1954), chap. 2695275.
83. L. Guo, S. P. DeWeerth, High-Density Stretchable Electronics: Toward an Integrated Multilayer Composite. Advanced Materials 22, 4030-4033 (2010).
84. M. M. Hutchison, R. W. K. Honeycombe, Solution-Hardening in Silver-Base Alloys. Materials Science and Technology 1, 70-74 (1967).
85. G. Y. Jing et al., Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy. Physical Review B 73, (2006).
86. J. R. Kim et al., Temperature-dependent single-electron tunneling effect in lightly and heavily doped GaN nanowires. Physical Review B 69, (2004).
87. H. Wei et al., Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticle-Nanowire Systems. Nano Letters 8, 2497-2502 (2008).
88. L. Hu, D. S. Hecht, G. Gru1ner, Percolation in Transparent and Conducting Carbon Nanotube Networks. Nano Letters 4, 2513-2517 (2004).
89. H. P. Wu et al., High conductivity of isotropic conductive adhesives filled with silver nanowires. International Journal of Adhesion and Adhesives 26, 617-621 (2006).
90. L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, Y. Cui, Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano 4, 2955-2963 (2010).
91. S. H. Park et al., Three-Helix Bundle DNA Tiles Self-Assemble into 2D Lattice or 1D Templates for Silver Nanowires. Nano Letters 5, 693-696 (2005).
92. X. Ji, W. Cai, P. Zhang, High-order DGTD methods for dispersive Maxwell's equations and modelling of silver nanowire coupling. International Journal for Numerical Methods in Engineering 69, 308-325 (2007).
93. T. D. Lazzara, G. R. Bourret, R. B. Lennox, T. G. M. v. d. Ven, Polymer Templated Synthesis of AgCN and Ag Nanowires. Chemistry of Materials 21, 2020-2026 (2009).
94. S. Padalkar et al., Alpha-synuclein as a template for the synthesis of metallic nanowires. Nanotechnology 18, (2007).
95. J. Liu et al., paper presented at the IEEE International Nanoelectronics Conference, 2008.
96. Z. a. Hu, T. Xu, R. j. Liű, H. l. Li, Template preparation of high-density, and large-area Ag nanowire array by acetaldehyde reduction. Materials Science and Engineering: A 371, 236-240 (2004).
97. Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, Y. Xia, Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone). Chemistry of Materials 14, 4736-4745 (2002).
98. B. Wiley, T. Herricks, Y. Sun, Y. Xia, Polyol Synthesis of Silver Nanoparticles: Use of Chloride and Oxygen to Promote the Formation of Single-Crystal, Truncated Cubes and Tetrahedrons. Nano Letters 4, 1733-1739 (2004).
99. Y. Gao et al., Growth mechanism of silver nanowires synthesized by polyvinylpyrrolidone-assisted polyol reduction. Journal of Physics D: Applied Physics 38, 1061-1067 (2005).
100. X. C. Wen et al., Controlled growth of large-scale silver nanowires. Chinese Physics 14, (2005).
101. C. Chen et al., The influence of seeding conditions and shielding gas atmosphere on the synthesis of silver nanowires through the polyol process. Nanotechnology 17, 466-474 (2006).
102. L. Sun et al., Aggregation-based growth of silver nanowires at room temperature. Applied Surface Science 254, 2581-2587 (2008).
103. G. Zhou et al., Surfactant-assisted synthesis and characterization of silver nanorods and nanowires by an aqueous solution approach. Journal of Crystal Growth 289, 255-259 (2006).
104. G. W. Sławiński, F. P. Zamborini, Synthesis and Alignment of Silver Nanorods and Nanowires and the Formation of Pt, Pd, and Core/Shell Structures by Galvanic Exchange Directly on Surfaces. Langmuir 23, 10357-10365 (2007).
105. X. Yang, W. He, S. Wang, G. Zhou, Y. Tang, Preparation and properties of a novel electrically conductive adhesive using a composite of silver nanorods, silver nanoparticles, and modified epoxy resin. Journal of Materials Science: Materials in Electronics 23, 108-114 (2012).
106. J. Liu, Y. Cao, X. Li, X. Wang, X. Zeng, High-performance electrically conductive silver paste prepared by silver-containing precursor. Applied Physics A 100, 1157-1162 (2010).
107. J. Silva, S. Ribeiro, S. L. Mendez, R. Simões, The influence of matrix mediated hopping conductivity, filler concentration, aspect ratio and orientation on the electrical response of carbon nanotube/polymer nanocomposites. Composites Science and Technology 71, 643-646 (2011).
108. X. Y. Zeng, Q. K. Zhang, R. M. Yu, C. Z. Lu, A New Transparent Conductor: Silver Nanowire Film Buried at the Surface of a Transparent Polymer. Advanced Materials 22, 4484-4488 (2010).
109. M. Hu et al., Flexible Transparent PES/Silver Nanowires/PET Sandwich-Structured Film for High-Efficiency Electromagnetic Interference Shielding. Langmuir 28, 7101-7106 (2012).
110. I. Moreno, N. Navascues, M. Arruebo, S. Irusta, J. Santamaria, Facile preparation of transparent and conductive polymer films based on silver nanowire/polycarbonate nanocomposites. Nanotechnology 24, 275603 (2013).
111. D. C. Trivedi, Handbook of Organic Conductive Molecules and Polymers. (Wiley, 1997), vol. 2.
112. J. L. N. Violette, D. R. J. White, Electromagnetic compatibility handbook. (Van Nostrand Reinhold, 1987).
113. D. M. Bigg, E. J. Bradbury, Conducting Polymers. (1981).
114. E. J. Carlson, Corrosion concerns in EMI shielding of electronics. An overview. Materials Performance 29, 76-80 (1990).
115. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. Journal of the Chemical Society, Chemical Communications, 578-580 (1977).
116. D. C. Trivedi, S. Srinivasan, Benzene–naphthalene copolymer as a processible conductive polymer. Journal of the Chemical Society, Chemical Communications, (1988).
117. D. C. Trivedi, S. Srinivasan, Electrochemical synthesis of benzene—naphthalene copolymer. Journal of Materials Science Letters 8, 709-710 (1989).
118. C. Casagrande, S. Panero, P. Prosperi, B. Scrosati, Properties of electrochemically synthesized polymer electrodes Part VIII: Kinetics of polypyrrole in polymer electrolyte cells. Journal of Applied Electrochemistry 22, 195-199 (1992).
119. G. Gustafsson et al., Flexible light-emitting diodes made from soluble conducting polymers. Nature 357, 477 (1992).
120. H. H. Kuhn, A. D. Child, W. C. Kimbrell, Toward real applications of conductive polymers. Synthetic Metals 71, 2139-2142 (1995).
121. I. 128, EMI Shielding - Conductive Plastics and Elastomers Techtrends -international reports on emerging technologies. (World Business Publications, 1987).
122. M. Štefečka et al., Electromagnetic shielding efficiency of plasma treated and electroless metal plated polypropylene nonwoven fabrics. Journal of Materials Science 39, 2215-2217 (2004).
123. Y. Yang, M. C. Gupta, Novel Carbon Nanotube-Polystyrene Foam Composites for Electromagnetic Interference Shielding. Nano Letters 5, 2131-2134 (2005).
124. V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu, Functionalized Graphene–PVDF Foam Composites for EMI Shielding. Macromolecular Materials and Engineering 296, 894-898 (2011).
125. D. X. Yan et al., Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. Journal of Materials Chemistry 22, 18772-18774 (2012).
126. S. T. Hsiao et al., Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 60, 57-66 (2013).
127. H. C. Schniepp et al., Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. Journal of Physical Chemistry B 110, 8535-8539 (2006).
128. D. Cai, M. Song, Recent advance in functionalized graphene/polymer nanocomposites. Journal of Materials Chemistry 20, 7906-7915 (2010).
129. M. C. Kim, G. S. Hwang, R. S. Ruoff, Epoxide reduction with hydrazine on graphene: A first principles study. Journal of Chemical Physics 131, (2009).
130. X. Gao, J. Jang, S. Nagase, Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design. Journal of Physical Chemistry C 114, 832-842 (2010).
131. A. Lerf, H. He, M. Forster, J. Klinowski, Structure of Graphite Oxide Revisited. Journal of Physical Chemistry B 102, 4477-4482 (1998).
132. J. C. Meyer et al., The structure of suspended graphene sheets. Nature 446, 60-63 (2007).
133. W. Zhang, P. Chen, Q. Gao, Y. Zhang, Y. Tang, High-Concentration Preparation of Silver Nanowires: Restraining in Situ Nitric Acidic Etching by Steel-Assisted Polyol Method. Chemistry of Materials 20, 1699-1704 (2008).
134. Y. H. Chang, Y. C. Lu, K. S. Chou, Diameter Control of Silver Nanowires by Chloride Ions and Its Application as Transparent Conductive Coating. Chemistry Letters 40, 1352-1353 (2011).
135. M. Tsuji et al., Roles of Pt seeds and chloride anions in the preparation of silver nanorods and nanowires by microwave-polyol method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 316, 266-277 (2008).
136. W. C. Zhang et al., Self-organized formation of silver nanowires, nanocubes and bipyramids via a solvothermal method. Acta Materialia 56, 2508-2513 (2008).
137. N. W. Pu et al., Dispersion of graphene in aqueous solutions with different types of surfactants and the production of graphene films by spray or drop coating. Journal of the Taiwan Institute of Chemical Engineers 43, 140-146 (2012).
138. S. Stankovich et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, (2007).
139. M. S. Strano et al., The Role of Surfactant Adsorption during Ultrasonication in the Dispersion of Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology 3, 81-86 (2003).
140. M. Lotya, P. J. King, U. Khan, S. De, J. N. Coleman, High-Concentration, Surfactant-Stabilized Graphene Dispersions. ACS Nano 4, 3155-3162 (2010).
141. R. J. Smith, M. Lotya, J. N. Coleman, The importance of repulsive potential barriers for the dispersion of graphene using surfactants. New Journal of Physics 12, (2010).
142. X. Ji et al., Mesoporous silica reinforced polymer nanocomposites. Chemistry of Materials 15, 3656-3662 (2003).
143. Z. Peng, L. X. Kong, A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polymer Degradation and Stability 92, 1061-1071 (2007).
144. M. H. Al-Saleh, U. Sundararaj, X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites. Journal of Physics D: Applied Physics 46, (2013).
145. J. M. Gohil, A. Bhattacharya, P. Ray, Studies on the Cross-linking of Poly(Vinyl Alcohol). Journal of Polymer Research 13, 161-169 (2006).
146. H. S. Mansur, C. M. Sadahira, A. N. Souza, A. A. P. Mansur, FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering C 28, 539-548 (2008).
147. H. B. Zhang, Q. Yan, W. G. Zheng, Z. He, Z. Z. Yu, Tough Graphene - Polymer Microcellular Foams for Electromagnetic Interference Shielding. Applied Materials & Interfaces 918-924 (2011).