簡易檢索 / 詳目顯示

研究生: 陳靜妮
Jing-Ni Chen
論文名稱: 小動物雙光子斷層掃描系統之評估-蒙地卡羅模擬研究
Performance Evaluation of An Animal Dual Photons Emission Computed Tomography (DuPECT) System-A Monte Carlo Simulation
指導教授: 莊克士
Keh-Shih Chuang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 47
中文關鍵詞: 雙光子針孔準直儀銦-111
外文關鍵詞: dual photons, pinhole collimator, In-111
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在以蒙地卡羅方法模擬雙光子斷層掃描(DuPECT)在小動物造影的表現。DuPECT是使用microPET的偵檢器以及SPECT常用的In-111核種,以期改善PET核種必須經由迴旋加速器產生的問題(成本高且核種半衰期短),並且得到符合需求的解析度。In-111核種半衰期2.8天且99.995%會放出兩個能量分別為171keV及245keV的γ光子,利用microPET 系統的符合線路,可得每個In-111蛻變產生的兩個不同能量光子的同符事件(coincidence),記錄其在偵檢器上的兩個位置,再利用其與多孔準直儀(multi-pinhole collimator)的兩條連線即可得一交點,因此,每記錄到一個同符事件便可得一個交點,此交點亦即核種發射的位置。在本研究中共設計5個實驗(pinhole孔徑的選擇、點射源在不同位置解析度之偵測、均勻度測試、活度定量測試以及衰減校正)以決定系統幾何及測試系統的各項特性。實驗結果顯示,使用直徑1.0 mm的點射源,在照野中心(CFOV)的解析度約為1.8 mm,靈敏度0.0295%,射源偏離CFOV越遠則變形的情況越嚴重,系統FOV為10 mm,均勻度約6.3%,由於隨機效應以及假影的影響,活度定量分析尚無法非常精確。模擬結果證明了DuPECT概念的可行性,只要能夠同時發出兩種能量不同的核種,即可使用DuPECT成像。目前的解析度與靈敏度尚未超越普遍使用的小動物核醫儀器,並且還有許多問題待改善,但現階段處於系統發展初期,未來將從多方面著手改善。


    The purpose of this work is to simulate the application of dual photons computed tomography (DuPECT) in animal study. The detector of the micoPET 、multi-pinhole collimator and the isotope 111In were used in the DuPECT method. It is expected to alter the problem that the isotopes used in PET must be generated from the cyclotron (high costs and short half-life) and to obtain higher resolution. 111In disintegrates by >99.99% and then emits two γ photons with 171keV and 245keV energy. As a result of both the multi-pinhole collimator which could collimate the emitted photons and the coincidence circuit of the PET system which could obtain the coincidence, we can use the two coincidence events to each connect to the pinholes to obtain two lines which can intersect to a point but not a line of response (LOR) like microPET does. Each coincidence can use the above method to obtain one intersection which is also the position of decay. We devised 5 experiments in this paper (varies pinhole size、different position of the point source、uniformity、quantification and attenuation correction) to construct the geometry of the DuPECT system and to test the system. The results showed that the resolution in the central field-of-view is around 1.8 mm, the sensitivity is 0.0295%, the uniformity is around 6.3% and the distortion is more serious as the source farther from the CFOV. Due to the random effect and the artifact, the quantification is not precise. The simulation proved that the concept of DuPECT method is feasible if only the isotope would emits two photons with distinct energy. Both the resolution and the sensitivity are not as good as we expected. There are still many problems need to be solved, nevertheless, DuPECT is in its initial stage so that many things need to be done in the future.

    第一章 緒論.................................1 1.1 前言..................................1 1.2 PET原理...............................2 1.3 SPECT原理.............................3 1.4 U-SPECT微型針孔單光子斷層掃描.........4 1.5 研究動機..............................6 1.6 論文架構..............................7 第二章 材料與方法...........................8 2.1 In-111核種............................8 2.2 實驗概念..............................9 2.3 實驗流程.............................12 2.3.1 pinhole孔徑選擇................16 2.3.2 點射源在不同位置解析度之偵測...18 2.3.3衰減校正........................18 2.3.4 活度定量測試...................20 第三章 結果與討論..........................21 3.1 Point Source影像結果.................21 3.1.1 不同pinhole孔徑大小影像結果....21 3.1.2 照野內不同位置影像結果.........26 3.2 Uniform Source影像結果...............37 3.2.1 衰減校正影像結果...............37 3.2.2 定量分析結果...................39 第四章 結論與未來工作......................44 參考文獻...................................46

    1. Assie K, Gardin I, Vera P, and Buvat I 2004 Validation
    of GATE Monte Carlo simulations for indium 111 imaging
    IEEE
    2. Beekman FJ, Vastenhouw B, van der Have F, Hoekstra A and
    van Rijk P P 2004 U-SPECT I: Sub-mm resolution small
    animal SPECT based on a triple detector gamma camera J.
    Nucl. Med. 45 97P
    3. Beekman FJ, and Vastenhouw B 2004 Design and simulation
    of a high-resolution stationary SPECT system for small
    animals Phys. Med. Biol. 49 4579-4592
    4. Beekman FJ, van der Have F, Vastenhouw B, van der Linden
    AJA, van Rijk PP, Burbach JPH, and Smidt MP 2005 U-SPECT-
    I: A novel system for submillimeter-resolution
    tomography with radiolabeled molecules in mice J. Nucl.
    Med. 46 1194-1200
    5. Chatziioannou AF 2002 Molecular imaging of small animals
    with dedicated PET tomographs Eur J Nucl Med Mol
    Imaging 29 98-114
    6. Cherry SR, Shao Y, Silverman RW, Meadors K, Siegel S,
    Chatziioannou A, Young JW, Jones WF, Moyers JC,
    Boutefnouchet A, Farquhar TH, Andreaco M, Paulus MJ,
    Binkley DM, Nutt R, Phelps ME 1997 MicroPET: a high
    resolution PET scanner for imaging small animals IEEE
    Trans. Nucl. Sci. 44 1161-1166
    7. Cherry SR, Sorenson JA, Phelps ME 2003 Physics in
    nuclear medicine (3rd ed) Philadelphia, Pennsylvania:
    Saunders
    8. Ishizu K, Mukai T, Yonekura Y 1995 Ultra-high-resolution
    SPECT system using four pinhole collimators for small
    animal studies J. Nucl. Med. 26 2282-2289
    9. Jaszczak RJ, Li J, Wang H, Zalutsky MR, Coleman RE 1994
    Pinhole collimation for ultra-high-resolution small-
    field-of-view SPECT Phys. Med. Biol. 39 425-437
    10.Knoess C, Seigel S, Smith A, Newport D, Richerzhagen N,
    Winkeler A 2003 Performance evaluation of the microPET
    R4 PET scanner for rodents Eur J Nucl Med Mol Imaging 30
    737-47
    11.Madsen Mark T 2007 Recent advances in SPECT imaging J.
    Nucl. Med. 48 661-673
    12.McElroy DP, MacDonald LR, Beekman FJ 2002 Performance
    evaluation of A-SPECT: a high resolution desktop pinhole
    SPECT system for imaging small animals IEEE Trans. Nucl.
    Sci. 49 2139-2147
    13.Meikle SR, Fulton RR, Eberl S, Dahlbom M, Wong KP,
    Fulham MJ 2001 An investigation of coded aperture
    imaging for small animal SPECT IEEE Trans. Nucl. Sci. 48
    816-821
    14.Ogawa K, Kawade T, Nakamura K, Kubo A and Ichihara T
    1998 Ultra high resolution pinhole SPECT for small
    animal study IEEE Trans. Nucl. Sci. 45 3122-3126
    15.Rentmeester MCM, van der Have F, Beekman FJ 2007
    Optimizing multi-pinhole SPECT geometries using an
    analytical model Phys. Med. Biol. 52 2567-2581
    16.Tai YC, Chatziioannou AF, Yang Y, Silverman RW, Meadors
    K, Siegel S, Newport DF, Stickel JR, and Cherry S R 2003
    MicroPET II: design, development and initial performance
    of an improved microPET scanner for small-animal imaging
    Phys. Med. Biol. 48 1519-1537
    17.Van der Have F, Beekman FJ 2006 Penetration, scatter and
    sensitivity in channel micro-pinholes for SPECT: a Monte
    Carlo investigation IEEE Trans. Nucl. Sci. 53 2635-3645
    18.Vandervoort E, Camborde ML, Jan S, and Sossi V 2005
    Monte-Carlo modeling of the microPET R4 small animal PET
    scanner for coincidence-mode emission and singles-mode
    transmission data acquisition IEEE Nuclear Science
    Symposium Conference Record
    19.Wu Heyu, Pal Debashish, O’Sullivan Joseph A , and Tai
    Uuan-Chuan 2008 A feasibility study of a prototype PET
    insert device to convert a general-purpose animal PET
    scanner to higher resolution J. Nucl. Med. 49 79-87
    20.NUCLEIDE Gamma and Alpha Library http://laraweb.free.fr/
    OpenGATE Collaboration 21.http://www.opengatecollaboration.org
    22.莊克士 "醫學物理診斷學" 合記圖書; 2001
    23.丁慧枝 "放射藥品學" 偉明圖書; 2000

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE